精英家教网 > 高中数学 > 题目详情
一个棱长为6的正四面体纸盒内放一个正方体,若正方体可以在纸盒内任意转动,则正方体棱长的最大值为(     )
A.2B.3 C.D.
D

试题分析:设球的半径为,由正四面体的体积得:
所以,设正方体的最大棱长为,∴,∴.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,△中,,在三角形内挖去一个半圆(圆心在边上,半圆与分别相切于点,与交于点),将△绕直线旋转一周得到一个旋转体。

(1)求该几何体中间一个空心球的表面积的大小;
(2)求图中阴影部分绕直线旋转一周所得旋转体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知矩形中,,将矩形沿对角线折起,使移到点,且在平面上的射影恰好在上.

(1)求证:
(2)求证:平面平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直角梯形边上的中点(如图甲),,将沿折到的位置,使,点上,且(如图乙)

(Ⅰ)求证:平面ABCD.
(Ⅱ)求二面角E?AC?D的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱中, 上的点且边上的高.
(Ⅰ)求证:平面
(Ⅱ)求证:
(Ⅲ)线段上是否存在点,使平面?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,直三棱柱的六个顶点都在半径为1的半球面上,,侧面是半球底面圆的内接正方形,则侧面的面积为(  )
A.2B.1 C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,平面四边形中, ,,,将其沿对角线折成四面体,使平面平面,若四面体顶点在同一球面上,则该球的体积为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有一个长方体容器,装的水恰好占其容积的一半;表示水平的桌面,容器一边紧贴桌面,沿将其翻转使之倾斜,最后水面(阴影部分)与其各侧棱的交点分别是(如图),设翻转后容器中的水形成的几何体是,翻转过程中水和容器接触面积为,则下列说法正确的是(  )
A.是棱柱,逐渐增大
B.是棱柱,始终不变
C.是棱台,逐渐增大
D.是棱台,始终不变

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法正确的是(  )
A.任意三点可确定一个平面B.四边形一定是平面图形
C.梯形一定是平面图形D.一条直线和一个点确定一个平面

查看答案和解析>>

同步练习册答案