精英家教网 > 高中数学 > 题目详情
如图,已知矩形中,,将矩形沿对角线折起,使移到点,且在平面上的射影恰好在上.

(1)求证:
(2)求证:平面平面
(3)求二面角的余弦值.
(1)详见解析;(2)详见解析;(3)二面角的余弦值.

试题分析:(1)利用折叠后点在平面内的射影点在棱上得到平面,从而得到,再结合即可证明平面,进而证明;(2)由(1)中的结论平面并结合平面与平面垂直的判定定理即可证明平面平面;(3)先作,连接,利用(1)中的结论平面得到,于是得到平面,于是得到为二面角的平面角,然后在直角三角形中计算,进而确定二面角的余弦值;另一种方法是利用空间向量法计算二面角的余弦值.
试题解析:(1)在平面上的射影上,平面
平面
平面
平面
(2)四边形是矩形,
由(1)知平面
平面平面平面
(3)平面,在中,由,得
过点,垂足为点,连接
平面平面
为二面角的平面角,
又在
另解:以点为坐标原点,以方向为轴,以方向为轴,以平行的方向为轴,建立空间直角坐标系,可知,得
设平面的法向量为,由,得
而平面的法向量为
结合图象可知二面角的余弦值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求证:CD⊥平面PAC;
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,侧面是等边三角形,在底面等腰梯形中,的中点,的中点,.

(1)求证:平面平面
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=3,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF平面EFDC,设AD中点为P.
(Ⅰ)当E为BC中点时,求证:CP∥平面ABEF;
(Ⅱ)设BE=x,当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若空间三条直线满足,则直线( ).
A.一定平行B.一定相交C.一定是异面直线D.一定垂直

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(经过圆锥旋转轴的截面中两条母线的夹角)是             

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个棱长为6的正四面体纸盒内放一个正方体,若正方体可以在纸盒内任意转动,则正方体棱长的最大值为(     )
A.2B.3 C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于四面体ABCD,以下命题中,真命题的序号为       (填上所有真命题的序号)
①若AB=AC,BD=CD,E为BC中点,则平面AED⊥平面ABC;
②若AB⊥CD,BC⊥AD,则BD⊥AC;
③若所有棱长都相等,则该四面体的外接球与内切球的半径之比为2:1;
④若以A为端点的三条棱所在直线两两垂直,则A在平面BCD内的射影为△BCD的垂心;
⑤分别作两组相对棱中点的连线,则所得的两条直线异面。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知四面体中,,则四面体外接球的表面积为
A.36πB.88πC.92πD.128π

查看答案和解析>>

同步练习册答案