精英家教网 > 高中数学 > 题目详情
如图,四棱锥中,侧面是等边三角形,在底面等腰梯形中,的中点,的中点,.

(1)求证:平面平面
(2)求证:平面.
(1)证明过程详见解析;(2)证明过程详见解析.

试题分析:本题主要以四棱锥为几何背景考查线线垂直、线面垂直、面面垂直、线面平行的判定,运用传统几何法证明,突出考查空间想象能力.第一问,利用已知的边长和特殊关系,证明出,所以利用线面垂直的判定定理就会得出平面,再利用面面垂直的判定定理即可;第二问,先利用线面平行的判定定理证明∥平面,通过同位角相等可以得出,再证明平面,再通过面面平行的判定定理得到平面∥平面,所以面内的线平行平面.
试题解析:(Ⅰ)∵是等边三角形,的中点,
.    2分
∵在,    3分
,∴
中,,    4分
是直角三角形.∴
又∵,∴平面
又∵平面,∴平面⊥平面.    6分
(Ⅱ)取的中点,连接

点分别是的中点,∴
平面平面,所以∥平面.    8分
∵点的中点,∴
,∴是等边三角形,∴
平面平面,所以平面
,∴平面∥平面
平面,∴平面.     12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知矩形中,,将矩形沿对角线折起,使移到点,且在平面上的射影恰好在上.

(1)求证:
(2)求证:平面平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直角梯形边上的中点(如图甲),,将沿折到的位置,使,点上,且(如图乙)

(Ⅰ)求证:平面ABCD.
(Ⅱ)求二面角E?AC?D的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,侧面底面,,中点,底面是直角梯形,,,

(1) 求证:平面
(2) 求证:平面平面
(3) 设为棱上一点,,试确定的值使得二面角

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,平面平面,四边形为平行四边形,.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为a的正方形ABCD中,点E、F分别在AB、BC上,且,将△AED、△CFD分别沿DE、DF折起,使A、C两点重合于点,连结A¢B.

(Ⅰ)判断直线EF与A¢D的位置关系,并说明理由;
(Ⅱ)求二面角F-A¢B-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用斜二测画法作一个边长为2的正方形,则其直观图的面积为(  )
A.B. 2C.4D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个水平放置的平面图形的斜二测直观图是一个底角为,腰和上底均为1的等腰梯形,则这个平面图形的面积(     )
A.B.C.1+D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知多面体中,⊥平面⊥平面 ,的中点.

(1)求证:⊥平面
(2)求二面角的大小.

查看答案和解析>>

同步练习册答案