精英家教网 > 高中数学 > 题目详情
一个水平放置的平面图形的斜二测直观图是一个底角为,腰和上底均为1的等腰梯形,则这个平面图形的面积(     )
A.B.C.1+D.
D

试题分析:斜二测法作图要注意:①与轴垂直的直线,在直观图中画为与角的直线;②与轴平行的线段,在直观图中与轴平行,且长度保持不变;与轴平行的线段,在直观图中与轴平行,且长度为原来的一半.可计算直观图中梯形下底长为1+,所以该平面图形的面积为,选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求证:CD⊥平面PAC;
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面为正方形,底面分别是的中点.

(1)求证:平面
(2)求证:平面平面
(3)若,求与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,侧面是等边三角形,在底面等腰梯形中,的中点,的中点,.

(1)求证:平面平面
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形,满足上,上,且,沿将矩形折起成为一个直三棱柱,使重合后分别记为,在直三棱柱中,点分别为的中点.

(I)证明:∥平面
(Ⅱ)若二面角为直二面角,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,,,分别为的中点.

(Ⅰ)求证:;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知球的直径SC=4,A,B是该球球面上的两点,AB=2.∠ASC=∠BSC=60°,则三棱锥S—ABC的体积为_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(经过圆锥旋转轴的截面中两条母线的夹角)是             

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于四面体ABCD,以下命题中,真命题的序号为       (填上所有真命题的序号)
①若AB=AC,BD=CD,E为BC中点,则平面AED⊥平面ABC;
②若AB⊥CD,BC⊥AD,则BD⊥AC;
③若所有棱长都相等,则该四面体的外接球与内切球的半径之比为2:1;
④若以A为端点的三条棱所在直线两两垂直,则A在平面BCD内的射影为△BCD的垂心;
⑤分别作两组相对棱中点的连线,则所得的两条直线异面。

查看答案和解析>>

同步练习册答案