精英家教网 > 高中数学 > 题目详情
如图,矩形,满足上,上,且,沿将矩形折起成为一个直三棱柱,使重合后分别记为,在直三棱柱中,点分别为的中点.

(I)证明:∥平面
(Ⅱ)若二面角为直二面角,求的值.
详见解析;.

试题分析:连结DB1 、DC1,由的中位线来证明线面平行.由条件可知∠BDC = 90°.再建系求出各点坐标,求面的法向量,面的法向量,由二面角为直二面角得,从而解得.
试题解析:(Ⅰ)证:连结DB1 、DC∵四边形DBB1D1为矩形,M为D1B的中点   2分
∴M是DB1与D1B的交点,且M为DB1的中点
∴MN∥DC1,∴MN∥平面DD1C1C                              4分
(Ⅱ)解:四边形为矩形,B.C在A1A2上,B1.C1上,
且BB1∥CC1,A1B = CA2 = 2,
∴∠BDC = 90°                                            6分

以DB、DC、DD1所在直线分别为x.y.z轴建立直角坐标系,则
D(0,0,0),B(2,0,0),C(0,2,0),D1(0,0,),B1(2,0,),C1(0,2,)
点M、N分别为D1B和B1C1的中点,∴
设平面D1MN的法向量为m = (x,y,z),则

令x = 1得:
                                             8分
设平面MNC的法向量为n = (x,y,z),则
,令z = 1得:
                                         10分
∵二面角D1-MN-C为直二面角   ∴m⊥n,故,解得:
∴二面角D1-MN-C为直二面角时,.         12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,底面△为等腰直角三角形,为棱上一点,且平面⊥平面.

(Ⅰ)求证:为棱的中点;(Ⅱ)为何值时,二面角的平面角为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,侧面底面,,中点,底面是直角梯形,,,

(1) 求证:平面
(2) 求证:平面平面
(3) 设为棱上一点,,试确定的值使得二面角

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,平面平面,四边形为平行四边形,.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,六棱锥的底面是边长为1的正六边形,底面
(Ⅰ)求证:平面平面
(Ⅱ)若直线PC与平面PDE所成角为,求三棱锥高的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为a的正方形ABCD中,点E、F分别在AB、BC上,且,将△AED、△CFD分别沿DE、DF折起,使A、C两点重合于点,连结A¢B.

(Ⅰ)判断直线EF与A¢D的位置关系,并说明理由;
(Ⅱ)求二面角F-A¢B-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个水平放置的平面图形的斜二测直观图是一个底角为,腰和上底均为1的等腰梯形,则这个平面图形的面积(     )
A.B.C.1+D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC 中,∠C =90°,∠B =30°,AC=1,M 为 AB 中点,将△ACM 沿 CM 折起,使 A、B 间的距离为 ,则 M 到面 ABC 的距离为(  )

(A)
(B)
(C)1
(D)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧面底面,若分别为的中点.

(Ⅰ) 求证://平面
(Ⅱ) 求证:平面平面

查看答案和解析>>

同步练习册答案