精英家教网 > 高中数学 > 题目详情
如图,六棱锥的底面是边长为1的正六边形,底面
(Ⅰ)求证:平面平面
(Ⅱ)若直线PC与平面PDE所成角为,求三棱锥高的大小。
(Ⅰ)详见解析;(Ⅱ)

试题分析:(Ⅰ)由线线垂直得到线面垂直CD⊥平面PAC,进而求证出面面垂直;(Ⅱ)由已知条件求出SPCD和SBCD,再利用等体积法求出三棱锥B-PCD的高.
试题解析:(Ⅰ)在正六边形ABCDEF中,CD⊥AC.
因为PA⊥底面ABCDEF,CDÌ平面ABCDEF,所以CD⊥PA. 
又AC∩PA=A,所以CD⊥平面PAC.
因为CDÌ平面PCD,所以平面PAC⊥平面PCD.

(Ⅱ)直线PC与底面ABCDEF所成的角∠PCA=45°.
在Rt△PAC中,AC=,所以PA=,PC=
即三棱锥P-BCD的高为
SPCDPC·CD=,SBCDBC·CD sin120°=
设三棱锥B-PCD高为h,由VP-BCD=VB-PCD,得:
SBCD·PA=SPCD·h,
经计算可得:h=
所以三棱锥B-PCD高为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,是以为直径的半圆上异于点的点,矩形所在的平面垂直于该半圆所在平面,且

(Ⅰ).求证:
(Ⅱ).设平面与半圆弧的另一个交点为,
①.求证://;
②.若,求三棱锥E-ADF的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面为正方形,底面分别是的中点.

(1)求证:平面
(2)求证:平面平面
(3)若,求与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,侧棱底面,底面为矩形,上一点,

(I)若的中点,求证平面
(II)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形,满足上,上,且,沿将矩形折起成为一个直三棱柱,使重合后分别记为,在直三棱柱中,点分别为的中点.

(I)证明:∥平面
(Ⅱ)若二面角为直二面角,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形是正方形, 
(Ⅰ)求证:平面平面
(Ⅱ)求三棱锥的高

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知矩形中,的中点,沿将三角形折起,使.
(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方形的边长为2,分别为边的中点,是线段的中点,如图,把正方形沿折起,设

(1)求证:无论取何值,不可能垂直;
(2)设二面角的大小为,当时,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面是边长为2的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.

(1)证明:MN∥平面ABCD;
(2) 过点A作AQ⊥PC,垂足为点Q,求二面角A-MN-Q的平面角的余弦值.

查看答案和解析>>

同步练习册答案