精英家教网 > 高中数学 > 题目详情
如图,已知矩形中,的中点,沿将三角形折起,使.
(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.
(Ⅰ)详见解析;(Ⅱ).

试题分析:(Ⅰ)取中点H,先证明垂直于平面,进而证明平面;(Ⅱ)建立直角坐标系,构造向量,平面的法向量,利用公式求解.
试题解析:(Ⅰ)∵在矩形中,的中点,
为等腰直角三角形,
,即.                (1分)
中点H,连结,则
中,,
中,
               (2分)
                 (3分)
,                   (4分)
平面,                  (5分)
∴平面⊥平面.                 (6分)
(Ⅱ)解:分别以直线为x轴和y轴,O为坐标原点,建立如图所示的空间直角坐标系,

.
 (7分)
设平面的一个法向量为


                       (9分)
为直线与平面所成的角,
               (11分)
即直线与平面所成角的正弦值为        (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,侧面底面,,中点,底面是直角梯形,,,

(1) 求证:平面
(2) 求证:平面平面
(3) 设为棱上一点,,试确定的值使得二面角

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,六棱锥的底面是边长为1的正六边形,底面
(Ⅰ)求证:平面平面
(Ⅱ)若直线PC与平面PDE所成角为,求三棱锥高的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为a的正方形ABCD中,点E、F分别在AB、BC上,且,将△AED、△CFD分别沿DE、DF折起,使A、C两点重合于点,连结A¢B.

(Ⅰ)判断直线EF与A¢D的位置关系,并说明理由;
(Ⅱ)求二面角F-A¢B-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在直角梯形中,AD//BC, =900,BA="BC" 把ΔBAC沿折起到的位置,使得点在平面ADC上的正投影O恰好落在线段上,如图2所示,点分别为线段PC,CD的中点.

(I) 求证:平面OEF//平面APD;
(II)求直线CD与平面POF;
(III)在棱PC上是否存在一点,使得到点P,O,C,F四点的距离相等?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,

(I)求证
(II)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正方体的棱长为1,动点P在正方体表面上运动,且,记点P的轨迹长度为,则             .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC 中,∠C =90°,∠B =30°,AC=1,M 为 AB 中点,将△ACM 沿 CM 折起,使 A、B 间的距离为 ,则 M 到面 ABC 的距离为(  )

(A)
(B)
(C)1
(D)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形所在的平面与正方形所在的平面相垂直,分别是的中点.

(1)求证:面
(2)求直线与平面所成的角正弦值.

查看答案和解析>>

同步练习册答案