精英家教网 > 高中数学 > 题目详情
如图,正方形所在的平面与正方形所在的平面相垂直,分别是的中点.

(1)求证:面
(2)求直线与平面所成的角正弦值.
(1)利用线面垂直证明面面垂直;(Ⅱ) .

试题分析:(1)∵为正方形,∴
为正方形,∴,∴.     3分
,∴.
,∴面.          6分
(Ⅱ)作上的射影,连.…7′
,∴面
∴面,∴
与面所成的角.          9分
上的射影,连.

,则.


∴直线与平面所成的角的正弦值为.                12分
空间中的线面关系
点评:高考中常考查空间中平行关系与垂直关系的证明以及空间角的计算,这是高考的重点内容.证明的关键是熟练掌握并灵活运用相关的判定定理与性质定理
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知矩形中,的中点,沿将三角形折起,使.
(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:是⊙的直径,垂直于⊙所在的平面,PA="AC," 是圆周上不同于的任意一点,(1) 求证:平面。(2) 求二面角 P-BC-A 的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面是边长为2的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.

(1)证明:MN∥平面ABCD;
(2) 过点A作AQ⊥PC,垂足为点Q,求二面角A-MN-Q的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在三棱锥PABC中,已知PC⊥平面ABC,点C在平面PBA内的射影D在直线PB上.

(1)求证:AB⊥平面PBC;
(2)设AB=BC,直线PA与平面ABC所成的角为45°,求异面直线AP与BC所成的角;
(3)在(2)的条件下,求二面角C-PA-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形是正方形,为对角线的交点,的中点;

(1)求证:
(2)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABC-A1B1C1中, CC1⊥底面ABC,AC=BC,M,N分别是CC1,AB的中点.

(1)求证:CN⊥AB1
(2)求证:CN//平面AB1M.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,分别是的中点,则下列判断错误的是
A.垂直B.垂直
C.平行D.平行

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体的八个顶点中,平面经过其中的四个顶点,其余四个顶点到平面的距离都相等,则这样的平面的个数为(  )
A.6 B.8C.12D.16

查看答案和解析>>

同步练习册答案