精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC-A1B1C1中, CC1⊥底面ABC,AC=BC,M,N分别是CC1,AB的中点.

(1)求证:CN⊥AB1
(2)求证:CN//平面AB1M.
(1)如下(2)如下

试题分析:证明:(1)∵三棱柱ABC-A1B1C1中CC1⊥底面ABC,

∴BB1⊥平面ABC, ∴BB1⊥CN.
∵AC=BC,N是AB的中点,∴CN⊥AB.
又∵AB∩BB1=B,∴CN⊥平面AB B1A1,∴CN⊥AB1
(2)(方法一)连结A1B交AB1于P.∵三棱柱ABC-A1B1C1
∴P是A1B的中点.∵M,N分别是CC1,AB的中点,
∴NP // CM,且NP = CM,∴四边形MCNP是平行四边形,
∴CN//MP.∵CN平面AB1M,MP平面AB1M,

∴CN //平面AB1M.
(方法二)取BB1中点P,连结NP,CP.
∵N,P分别是AB,BB1的中点,∴NP //AB1
∵NP平面AB1M,AB1平面AB1M,
∴NP //平面AB1M.同理 CP //平面AB1M.
∵CP∩NP =P,∴平面CNP //平面AB1M.
∵CN平面CNP,∴CN //平面AB1M.
点评:直线与平面平行、垂直的判定定理是常考知识点。在证明时,需结合定理的条件写,不可凭自己的主观意识去写。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,A是半径为1的球面上一定点,动点P在此球面上运动,且
记点P的轨迹的长度为,则函数的图像可能是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC 中,∠C =90°,∠B =30°,AC=1,M 为 AB 中点,将△ACM 沿 CM 折起,使 A、B 间的距离为 ,则 M 到面 ABC 的距离为(  )

(A)
(B)
(C)1
(D)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧面底面,若分别为的中点.

(Ⅰ) 求证://平面
(Ⅱ) 求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形所在的平面与正方形所在的平面相垂直,分别是的中点.

(1)求证:面
(2)求直线与平面所成的角正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于直线以及平面,下面命题中正确的是
A.若
B.若
C.若
D.若,且,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m、n是两条不重合的直线,α、β是两个不重合的平面,下列命题中正确的是(  )
A.若m∥α,n∥β,α∥β,则m∥nB.若m∥n,nÌα,m(/α,则m∥α
C.若α⊥β,m⊥α,则m∥βD.若m⊥α,nÌβ,m⊥n,则α⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分1 2分)
如图,四边形ABCD中,,AD∥BC,AD =6,BC =4,AB =2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABCD平面EFDC,设AD中点为P.

( I )当E为BC中点时,求证:CP//平面ABEF
(Ⅱ)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知异面直线A.与b成80的角,p为空间一定点,则过点p与A.,b所成的角都是50的直线有且仅有(     ).
A.  1条      B .2条         C.3条        D.4条

查看答案和解析>>

同步练习册答案