精英家教网 > 高中数学 > 题目详情

已知点,直线,在直线上找一点使得最小,则这个最小值为(   )

A.            B.8                C.9                D.10

 

【答案】

D

【解析】

试题分析:根据题意,由于点,在直线的同侧,则求解点A关于直线l的对称点A’(4,2),则可知A’B之间的距离即为使得最小的值,这个最小值为10,故选D.

考点:两点距离的最值

点评:解决的关键是利用对称性,将同侧的一点关于直线对称后,与另一个点的连线即为所求。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩阵M的逆矩阵M-1
(Ⅱ)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cos∂
y=sin∂
(∂为参数)

(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
),判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知点A(-1,0),B(1,0),动点P满足:
PA
PB
=m(|
OP
OA
|
2
-
OB
2
)

(1)求动点P的轨迹方程,并根据m的取值讨论方程所表示的曲线类型;
(2)当动点P的轨迹为椭圆时,且该椭圆与直线l:y=x+2交于不同两点时,求此椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)选修4-4:《坐标系与参数方程》
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cosα
y=sinα
(α为参数)
(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
),判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杨浦区一模)设数列{xn}满足xn≠1且(n∈N*),前n项和为Sn.已知点p1(x1,S1),P2(x2,s2),…Pn(xn,sn)都在直线y=kx+b上(其中常数b,k且k≠1,b≠0),又yn=log
12
 xn
(1)求证:数列{xn]是等比数列;
(2)若yn=18-3n,求实数k,b的值;
(3)如果存在t、s∈N*,s≠t使得点(t,yt)和点(s,yt)都在直线y=2x+1上.问是否存在正整数M,当n>M时,xn>1恒成立?若存在,求出M的最小值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案