【题目】已知函数
,
,
为自然对数的底数.
(1)当
时,证明:
,
;
(2)若函数
在
上存在两个极值点,求实数
的取值范围.
【答案】(1)见解析;(2)![]()
【解析】
(1)先求导,再利用导数研究函数的单调性从而得证;
(2)先求导数
,再讨论当
时,当
时,函数的单调性及极值情况,再求解即可.
(1)当
时,
,则
,
当
时,
,则
,又因为
,
所以当
时,
,仅
时,
,
所以
在
上是单调递减,所以
,即
.
(2)
,因为
,所以
,
,
①当
时,
恒成立,所以
在
上单调递增,没有极值点.
②当
时,
,令
,
则
在
上单调递减,因为
,
,
当
,即
时,
,
,
所以
在
上单调递增,
,
,
所以
,
,即
,所以
单调递减,无极值点;
当
,即
时,存在
,使
,
当
时,
,当
时,
,
所以
在
单调递增,在
单调递减,
在
处取极大值,
因为
,所以
,又因为
,
,
若
存在两个极值点,即
存在两个变号零点,则
得
,
得
,得
,
此时存在
,
使得
,
,
当
,
,
,
,
,
,即
在
处取得极小值,在
处取得极大值,
,
为
的两个极值点,则此时
.
综上可知若函数
在
上存在两个极值点,则实数
的取值范围为:
.
科目:高中数学 来源: 题型:
【题目】已知甲盒内有大小相同的2个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各取2个球.
(1)求取出的4个球中恰有1个红球的概率;
(2)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图
所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士帕斯卡的著作(1655年)介绍了这个三角形,近年来,国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”
,如图
.17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”,如图
.在杨辉三角中,相邻两行满足关系式:
,其 中
是行数,
.请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是__________.
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,
是它的上顶点,点
各不相同且均在椭圆上.
(1)若
恰为椭圆长轴的两个端点,求
的面积;
(2)若
,求证:直线
过一定点;
(3)若
,
的外接圆半径为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数
的图象向右平移
个单位长度得到
的图象,若
的对称中心为坐标原点,则关于函数
有下述四个结论:
①
的最小正周期为
②若
的最大值为2,则![]()
③
在
有两个零点 ④
在区间
上单调
其中所有正确结论的标号是( )
A.①③④B.①②④C.②④D.①③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
常数
)满足
.
(1)求出
的值,并就常数
的不同取值讨论函数
奇偶性;
(2)若
在区间
上单调递减,求
的最小值;
(3)在(2)的条件下,当
取最小值时,证明:
恰有一个零点
且存在递增的正整数数列
,使得
成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以原点
为极点,
轴正半轴为极轴建立极坐标系.若曲线
的极坐标方程为
,
点的极坐标为
,在平面直角坐标系中,直线
经过点
,且倾斜角为
.
(1)写出曲线
的直角坐标方程以及点
的直角坐标;
(2)设直线
与曲线
相交于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
参数方程为
为参数),将曲线
上所有点的横坐标变为原来的
,纵坐标变为原来的
,得到曲线
.
(1)求曲线
的普通方程;
(2)过点
且倾斜角为
的直线
与曲线
交于
两点,求
取得最小值时
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解运动健身减肥的效果,某健身房调查了20名肥胖者,健身之前他们的体重情况如三维饼图(1)所示,经过四个月的健身后,他们的体重情况,如三维饼图(2)所示.对比健身前后,关于这20名肥胖者,下面结论不正确的是( )
![]()
A.他们健身后,体重在区间
内的人增加了2个
B.他们健身后,体重在区间
内的人数没有改变
C.他们健身后,20人的平均体重大约减少了8 kg
D.他们健身后,原来体重在区间
内的肥胖者体重都有减少
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com