精英家教网 > 高中数学 > 题目详情
(1)假设某地区有高中生2 400人,初中生10 900人,小学生11 000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?

(2)想一想为什么这样取各个学段的个体数?

(3)请归纳分层抽样的定义.

(4)请归纳分层抽样的步骤.

(5)分层抽样时如何分层?其适用于什么样的总体?

讨论结果:(1)分别利用系统抽样在高中生中抽取2 400×1%=24人,在初中生中抽取10 900×1%=109人,在小学生中抽取11 000×1%=110人.这种抽样方法称为分层抽样.

(2)含有个体多的层,在样本中的代表也应该多,即样本从该层中抽取的个体数也应该多.这样的样本才有更好的代表性.

(3)一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样.

(4)分层抽样的步骤:

①分层:按某种特征将总体分成若干部分(层);

②按抽样比确定每层抽取个体的个数;

③各层分别按简单随机抽样的方法抽取样本;

④综合每层抽样,组成样本.

(5)分层抽样又称类型抽样,应用分层抽样应遵循以下要求:

①分层时将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则,即保证样本结构与总体结构一致性.

②分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.

③当总体个体差异明显时,采用分层抽样.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、某地区有农民、工人、知识分子家庭共计2 004户,其中农民家庭1 600户,工人家庭303户.现要从中抽出容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法中的
①②③
.(将你认为正确的序号都写上)
①简单随机抽样  ②系统抽样  ③分层抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区有三座工厂分别位于△ABC的三个顶点,已知AB=AC=
30
km
BC=2
21
km
.为了处理三个工厂的污水,现要在△ABC区域内(不包括边界)且与B、C等距的一点O处建立一个污水处理厂,并铺设排污管道OA、OB、OC.
(1)设OA=xkm,若要使排污管道总长不超过11km,求x的取值范围;
(2)设∠OBC=θ,当排污管道总长取最小值时,求θ的值.

查看答案和解析>>

科目:高中数学 来源:江苏省阜宁中学2008届高三第三次调研考试数学试题(理科)人教版 人教版 题型:022

某地区有1500万互联网用户,该地区某用户感染了某种病毒,假设该病毒仅在被感染的第1小时内传染给另外2个用户,若不清除病毒,则在第22小时内该地区感染此病毒的用户数为________(223<1.5×107<224).

查看答案和解析>>

科目:高中数学 来源:江苏省阜宁中学2008届高三第三次调研考试数学试题(文科)人教版 人教版 题型:022

某地区有1500万互联网用户,该地区某用户感染了某种病毒,假设该病毒仅在被感染的第1小时内传染给另外2个用户,若不清除病毒,则在第22小时内该地区感染此病毒的用户数为________(223<1.5×107<224).

查看答案和解析>>

同步练习册答案