精英家教网 > 高中数学 > 题目详情
11.如图,四棱锥P-ABCD的底面为矩形,PA是四棱锥的高,AP=AB=2,F是PB的中点,E是BC上的动点.
(1)证明:PE⊥AF;
(2)若BC=2BE=4$\sqrt{3}$,求直线AP与平面PDE所成角的大小.

分析 (1)建立如图所示空间直角坐标系.设BE=a,证明:$\overrightarrow{PE}•\overrightarrow{AF}=0$,即可证明PE⊥AF;
(2)求出平面PDE的法向量,即可求直线AP与平面PDE所成角的大小.

解答 (1)证明:建立如图所示空间直角坐标系.设BE=a
则A(0,0,0),B(0,2,0),P(0,0,2),F(0,1,1),E(a,2,0)
   
于是,$\overrightarrow{PE}=(a,2,-2)$,$\overrightarrow{AF}=(0,1,1)$,
则$\overrightarrow{PE}•\overrightarrow{AF}=0$,所以AF⊥PE.
(2)解:由$BC=2BE=4\sqrt{3}$,得$D(4\sqrt{3},0,0)$,$E(2\sqrt{3},2,0)$,$\overrightarrow{PD}=(4\sqrt{3},0,-2)$,
$\overrightarrow{PE}$=(2$\sqrt{3}$,2,-2)设平面PDE的法向量为$\overrightarrow{n}$=(x,y,z),
由$({\begin{array}{l}{\overrightarrow n•\overrightarrow{PD}=0}\\{\overrightarrow n•\overrightarrow{PE}=0}\end{array}}\right.$,得:$\left\{{\begin{array}{l}{4\sqrt{3}x-2z=0}\\{2\sqrt{3}x+2y-2z=0}\end{array}}\right.$,令x=1,则$z=2\sqrt{3},y=\sqrt{3}$,
于是$\overrightarrow n=(1,\sqrt{3},2\sqrt{3})$,而$\overrightarrow{AP}=(0,0,2)$,
设AP与平面PDE所成角为θ,所以$sinθ=\frac{{|\overrightarrow n•\overrightarrow{AP}|}}{{|\overrightarrow n||\overrightarrow{AP}|}}=\frac{{\sqrt{3}}}{2}$,
所以AP与平面PDE所成角θ为60°.

点评 本题考查向量知识的运用,考查线线垂直,考查线面角,正确求出平面的法向量是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.六名同学A、B、C、D、E、F举行象棋比赛,采取单循环赛制,即参加比赛的每两个人之间仅赛一局.第一天,A、B各参加了3局比赛,C、D各参加了4局比赛,E参加了2局比赛,且A与C没有比赛过,B与D也没有比赛过.那么F在第一天参加的比赛局数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某地拟在一个U形水面PABQ(∠A=∠B=90°)上修一条堤坝(E在AP上,N在BQ上),围出一个封闭区域EABN,用以种植水生植物.为了美观起见,决定从AB上点M处分别向点E,N拉2条分割线ME,MN,将所围区域分成3个部分(如图),每部分种植不同的水生植物.已知AB=a,EM=BM,∠MEN=90°,设所拉分割线总长度为l.
(1)设∠AME=2θ,求用θ表示的l函数表达式,并写出定义域;
(2)求l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知全集U=R,集合A={x|-3<x≤2},B={x|x>1}.
(1)求A∩B,A∪(∁RB);
(2)已知集合C={x|2x+m<1},若A∩B⊆C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点M(x,y)满足$\left\{\begin{array}{l}x≥1\\ x-y+1≥0\\ 2x-y-2≤0\end{array}\right.$,若ax+y的最大值为1,则a的值为(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.六个学习小组依次编号为1、2、3、4、5、6,每组3人,现需从中任选3人组成一个新的学习小组,则3人来自不同学习小组的概率为(  )
A.$\frac{5}{204}$B.$\frac{45}{68}$C.$\frac{15}{68}$D.$\frac{5}{68}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)2013年宏伟房产公司的产值2亿元,按照以平均年增长率为8%计算,15年后宏伟房产公司的产值为多少亿元(精确到0.01亿元)?
(2)宏伟房产公司计划到2015年产值为2.42亿元,那么这家公司从2013年到2015年的两年间平均增速为百分之几?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x+$\frac{1}{x}$.
(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)在[1,+∞)上的单调性,并用定义证明;
(3)求函数f(x)在[-5,-3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a=8.10.51,b=8.10.5,c=log30.3,则(  )
A.b<a<cB.a<b<cC.b<c<aD.c<b<a

查看答案和解析>>

同步练习册答案