精英家教网 > 高中数学 > 题目详情
2.某地拟在一个U形水面PABQ(∠A=∠B=90°)上修一条堤坝(E在AP上,N在BQ上),围出一个封闭区域EABN,用以种植水生植物.为了美观起见,决定从AB上点M处分别向点E,N拉2条分割线ME,MN,将所围区域分成3个部分(如图),每部分种植不同的水生植物.已知AB=a,EM=BM,∠MEN=90°,设所拉分割线总长度为l.
(1)设∠AME=2θ,求用θ表示的l函数表达式,并写出定义域;
(2)求l的最小值.

分析 (1)设∠AME=2θ,求出EM,MN,即可求用θ表示的l函数表达式,并写出定义域;
(2)令f(θ)=sinθ(1-sinθ),sinθ∈(0,$\frac{\sqrt{2}}{2}$),即可求l的最小值.

解答 解:(1)∵EM=BM,∠B=∠MEN,
∴△BMN≌△EMN,
∴∠BNM=∠MNE,
∵∠AME=2θ,
∴∠BNM=∠MNE=θ,
设MN=x,
在△BMN中,BM=xsinθ,∴EM=BM=xsinθ,
∴△EAM中,AM=EMcos2θ=xsinθcos2θ,
∵AM+BM=a,
∴xsinθcos2θ+xsinθ=a,
∴x=$\frac{a}{sinθcos2θ+sinθ}$,
∴l=EM+MN=$\frac{a}{2sinθ(1-sinθ)}$,θ∈(0,$\frac{π}{4}$);
(2)令f(θ)=sinθ(1-sinθ),sinθ∈(0,$\frac{\sqrt{2}}{2}$),
∴f(θ)≤$\frac{1}{4}$,
当且仅当θ=$\frac{π}{6}$时,取得最大值$\frac{1}{4}$,此时lmin=2a.

点评 本题考查利用数学知识解决实际问题,考查三角函数模型的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在△ABC中,a,b,c分别是A,B,C的对边,$a=2\sqrt{3},b=2\sqrt{2}$,且1+2cos(B+C)=0,则BC边上的高等于(  )
A.$2({\sqrt{3}+1})$B.$2({\sqrt{3}-1})$C.$\sqrt{3}+1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.实数x,y满足$\left\{\begin{array}{l}x≤3\\ x+y≥0\\ x-y+6≥0.\end{array}\right.$若z=ax+y的最大值为3a+9,最小值为3a-3,则a的取值范围是(  )
A.[-1,0]B.[0,1]C.[-1,1]D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.对于函数f(x),若存在实数x0满足f(x0)=x0,则称x0为函数f(x)的一个不动点.已知函数f(x)=x3+ax2+bx+3,其中a,b∈R
(Ⅰ)当a=0时,
(ⅰ)求f(x)的极值点;
(ⅱ)若存在x0既是f(x)的极值点,又是f(x)的不动点,求b的值;
(Ⅱ)若f(x)有两个相异的极值点x1,x2,试问:是否存在a,b,使得x1,x2 均为f(x)的不动点?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆锥的侧面展开图为一个圆心角为120°,且面积为3π的扇形,则该圆锥的体积等于$\frac{2\sqrt{2}}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时.设甲、乙两人停车时间(小时)与取车概率如表所示.
  (0,2] (2,3] (3,4] (4,5]
 甲 $\frac{1}{2}$ x x x
 乙 $\frac{1}{6}$ $\frac{1}{3}$ y 0
(1)求甲、乙两人所付车费相同的概率;
(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在下列区间中,函数f(x)=lgx-$\frac{1}{x}$的零点所在的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面为矩形,PA是四棱锥的高,AP=AB=2,F是PB的中点,E是BC上的动点.
(1)证明:PE⊥AF;
(2)若BC=2BE=4$\sqrt{3}$,求直线AP与平面PDE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x3-3ax(a∈R).
(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程; 
(Ⅱ)若函数f(x)在区间(-1,2)上仅有一个极值点,求实数a的取值范围;
(Ⅲ)若a>1,且方程f(x)=a-x在区间[-a,0]上有两个不相等的实数根,求实数a的最小值.

查看答案和解析>>

同步练习册答案