精英家教网 > 高中数学 > 题目详情

设等差数列满足,则m的值为           (    )

A.               B.              C.              D.26

 

【答案】

C

【解析】

试题分析:根据题意,由于等差数列满足,则说明数列是首项为正数的递减数列,那么可知, ,根据,可知当m=13时能成立,故选C.

考点:等差数列

点评:主要是考查了等差数列的通项公式和前n项和公式的运用,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}满足a5=11,a12=-3,{an}的前n项和Sn的最大值为M,则lgM=(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若椭圆E1
x2
a
2
1
+
y2
b
2
1
=1
和椭圆E2
x2
a
2
2
+
y2
b
2
2
=1
满足
a2
a1
=
b2
b1
=m
 (m>0)
,则称这两个椭圆相似,m称为其相似比.
(1)求经过点(2,
6
)
,且与椭圆
x2
4
+
y2
2
=1
相似的椭圆方程;
(2)设过原点的一条射线l分别与(1)中的两个椭圆交于A、B两点(其中点A在线段OB上),
|OA|+
1
|OB|
的最大值和最小值;
(3)对于真命题“过原点的一条射线分别与相似比为2的两个椭圆C1
x2
22
+
y2
(
2
)
2
=1
和C2
x2
42
+
y2
(2
2
)
2
=1
交于A、B两点,P为线段AB上的一点,若|OA|、|OP|、|OB|成等差数列,则点P的轨迹方程为
x2
32
+
y2
(
3
2
2
)
2
=1
”.请用推广或类比的方法提出类似的一个真命题,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区二模)已知数列{an}对任意的n≥2,n∈N*满足:an+1+an-1<2an,则称{an}为“Z数列”.
(1)求证:任何的等差数列不可能是“Z数列”;
(2)若正数列{bn},数列{lgbn}是“Z数列”,数列{bn}是否可能是等比数列,说明理由,构造一个数列{cn},使得{cn}是“Z数列”;
(3)若数列{an}是“Z数列”,设s,t,m∈N*,且s<t,求证求证at+m-as+m<at-as

查看答案和解析>>

科目:高中数学 来源:2015届浙江省宁波市高一下学期期中考试文科数学试卷(解析版) 题型:选择题

设等差数列满足,则m的值为

A.               B.              C.              D.26

 

查看答案和解析>>

同步练习册答案