精英家教网 > 高中数学 > 题目详情
(2012•成都一模)已知点A、B、C、D在同一个球面上,AB丄平面BCD,BC丄BD,若AB=1;BC=2,BD=3,则此球的表面积是
14π
14π
分析:分别以AB、BC、BD为过同一顶点的三条棱作一个长方体,可得A、B、C、D都在这个球面上,根据球的性质得长方体的对角线恰好是外接球的直径,由此结合长方体对角线公式和球的表面积公式,即可得到所求球的表面积.
解答:解:∵AB丄平面BCD,BC丄BD,
∴分别以AB、BC、BD为过同一顶点的三条棱作一个长方体,
该长方体的8个顶点在同一个球面上,即A、B、C、D也在这个球面上
由球的性质,可得所作长方体的对角线恰好是三棱锥A-BCD的外接球的直径
设外接球半径为R,可得:2R=
12+22+32
=
14

∴半径为R=
14
2
,可得外接球的表面积S=4πR2=14π
故答案为:14π
点评:本题给出有三条棱两两垂直的三棱锥,在已知棱长的情况下求外接球的表面积,考查了直线与平面垂直的性质、球的几何性质和球表面积的求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•成都一模)已知函数f(x)=x2-2mx+2-m
(1)若不等式f(x)≥-mx+2在R上恒成立,求实数m的取值范围
(2)设函数f(x)在[0,1]上的最小值为g(m),求g(m)的解析式及g(m)=1时实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都一模)若函数f(x)满足:在定义域D内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)为“1的饱和函数”.有下列函数:
①f(x)=
1x
;②f(x)=2x

③f(x)=lg(x2+2);
④f(x)=cosπx,
其中你认为是“1的饱和函数”的所有函数的序号为
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都一模)设正方体ABC-A1B1C1D1 的棱长为2,动点E,F在棱A1B1上,动点P、Q分别在棱AD、CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z>0),则下列结论中错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都一模)已知函数f(x)=
3
inωxcosωx+1-sin2ωx
的周期为2π,其中ω>0.
(I)求ω的值及函数f(x)的单调递增区间;
(II)在△ABC中,设内角A、B、C所对边的长分别为a、b,c若a=
3
,c=2,f(A)=
3
2
,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都一模)设集合S={1,2,3,4,5,6},定义集合对(A,B):A⊆S,B⊆S,A中含有3个元素,B中至少含有2个元素,且B中最小的元素不小于A中最大的元素.记满足A∪B=S的集合对(A,B)的总个数为m,满足A∩B≠∅的集合对(A,B)的总个数为n,则
m
n
的值为(  )

查看答案和解析>>

同步练习册答案