精英家教网 > 高中数学 > 题目详情

已知函数f(x)=lnx-ax2+(2-a)x

(1)讨论f(x)的单调性;(2)设a>0,证明:当0<x<时,f

(3)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明f′(x0)<0.

解:(1)f(x)的定义域为(0,+∞),f′(x)=-2ax+(2-a)=-.………1分

①若a≤0,则f′(x)>0,所以f(x)在(0,+∞)单调递增.…………2分

②若a>0,则由f′(x)=0得x=,且当x∈时,f′(x)>0,当x>时,f′(x)<0.所以f(x)在单调递增,在单调递减.…………4分

(2)设函数g(x)=f-f,则g(x)=ln(1+ax)-ln(1-ax)-2ax,

g′(x)=-2a=.     …………………………6分

当0<x<时,g′(x)>0,…………7分    而g(0)=0,所以g(x)>0.

故当0<x<时,f>f.     …………………………9分

(3)当a≤0时,函数y=f(x)的图象与x轴至多有一个交点,故a>0,…………10分

从而f(x)的最大值为,且.…………………………11分

不妨设,则.由(2)得,而f(x)在单调递减.

……14分于是.由(1)知,.…………15分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2x+1,g(x)=ln(x+1).

(1)求函数y=g(x)-x在[0,1]上的最小值;

(2)当a≥时,函数t(x)=f(x)+g(x)的图像记为曲线C,曲线C在点(0,1)处的切线为l,是否存在a使l与曲线C有且仅有一个公共点?若存在,求出所有a的值;否则,说明理由.

(3)当x≥0时,g(x)≥-f(x)+恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2014届湖北省大治二中高二3月联考文科数学试卷(解析版) 题型:解答题

已知函数f(x)=x3+x-16,

(1)求曲线y=f(x)在点(2,-6)处的切线的方程;

(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;

 

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高二下期第一次月考理科数学试卷(解析版) 题型:解答题

已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.

(1)求使直线l和y=f(x)相切且以P为切点的直线方程;

(2)求使直线l和y=f(x)相切且切点异于P的直线方程.

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题

已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=时,y=f(x)有极值.

(1)求a、b、c的值;

(2)求y=f(x)在[-3,1]上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题

已知函数f(x)=x3-2x2+ax(x∈R,a∈R),在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直.

(1)求a的值和切线l的方程;

(2)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围

 

查看答案和解析>>

同步练习册答案