精英家教网 > 高中数学 > 题目详情

在空间直角坐标系中,已知O (0,0,0) ,A(2,-1,3),B(2,1,1).

(1)求|AB|的长度;

(2)写出A、B两点经此程序框图执行运算后的对应点A0,B0的坐标,并求出方向上的投影.

 

【答案】

(1);(2)=(2,-1,3),=(2,1,3);

【解析】

试题分析:(1)有空间两点间的距离可得AB两点的距离.本小题关键是考查空间中两点的距离公式,本公式类似平面中两点的距离公式.

(2)由程序框图可知对空间坐标中的z要求符合一个不等式.通过循环结构即可求得符合要求的z的值.根据向量在另一向量的投影即为该向量的模长与这两向量夹角的余弦值的乘积.本小题通过向量知识与立几知识的交汇,难度不大.有新意.

试题解析:在空间直角坐标系中,已知O (0,0,0) ,A(2,-1,3),B(2,1,1).

(1) 

(2)∵A(2,-1,3)满足 22+(-1)2≤32

∴输出A0(2,-1,3)

∵B(2,1,1)不满足22+12≤12

∴z=z+1=2

∵(2,1,2)不满足22+12≤22

∴z=z+1=3

∵(2,1,3)满足22+12≤32

∴输出B0(2,1,3)

=(2,-1,3),=(2,1,3)

方向上的投影等于

考点:1.空间中两点的距离.2.程序框图.3.空间中的直线关系.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2、在空间直角坐标系中,点P(1,2,3)关于xOz平面的对称点的坐标是
(1,-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在空间直角坐标系中,正方体棱长为2,点E是棱AB的中点,点F(0,y,z)是正方体的面AA1D1D上点,且CF⊥B1E,则点F(0,y,z)满足方程(  )
A、y-z=0B、2y-z-1=0C、2y-z-2=0D、z-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在空间直角坐标系中,正方体棱长为2,点E是棱B1C1的中点,点F(x,y,z)是正方体的面AA1D1D上的点,且CF∥平面A1BE,则点F(x,y,z)满足方程(  )
A、y-z=0B、y-z-1=0C、2y-z-2=0D、2y-z-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中,点(1,2,3 )到原点的距离是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州模拟)在空间直角坐标系中,设A(1,2,a),B(2,3,4),若|AB|=
3
,则实数a的值是(  )

查看答案和解析>>

同步练习册答案