精英家教网 > 高中数学 > 题目详情

已知直线数学公式(a∈R)和椭圆数学公式,则直线和椭圆相交有


  1. A.
    两个交点
  2. B.
    一个交点
  3. C.
    没有交点
  4. D.
    无法判断
A
分析:可判断直线过椭圆内部的一个定点,进而即可得出答案.
解答:由直线(a∈R)方程可知:此直线过点P,而=
∴点P在椭圆内部,
因此可得:直线和椭圆相交有2个交点.
故选A.
点评:正确判断直线过椭圆内部的一个定点是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)若点A(a,b)(其中a≠b)在矩阵M=
0-1
10
对应变换的作用下得到的点为B(-b,a).
(Ⅰ)求矩阵M的逆矩阵;
(Ⅱ)求曲线C:x2+y2=1在矩阵N=
0
1
2
10
所对应变换的作用下得到的新的曲线C′的方程.
(2)选修4-4:坐标系与参数方程
(Ⅰ)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位已知直线的极坐标方程为θ=
π
4
(ρ∈R)
,它与曲线
x=2+
5
cosθ
y=1+
5
sinθ
为参数)相交于两点A和B,求|AB|;
(Ⅱ)已知极点与原点重合,极轴与x轴正半轴重合,若直线C1的极坐标方程为:ρcos(θ-
π
4
)=
2
,曲线C2的参数方程为:
x=1+cosθ
y=3+sinθ
(θ为参数),试求曲线C2关于直线C1对称的曲线的直角坐标方程.
(3)选修4-5:不等式选讲
(Ⅰ)已知函数f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,求实数m的取值范围.
(Ⅱ)已知实数x、y、z满足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式(a∈R),将y=f(x)的图象向右平移两个单位,得到函数y=g(x)的图象,函数y=h(x)与函数y=g(x)的图象关于直线y=1对称.
(Ⅰ)求函数y=g(x)和y=h(x)的解析式;
(Ⅱ)若方程f(x)=a在x∈[0,1]上有且仅有一个实根,求a的取值范围;
(Ⅲ)设F(x)=f(x)+h(x),已知F(x)>2+3a对任意的x∈(1,+∞)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市望子成龙学校高一(上)期末数学模拟试卷(文科)(解析版) 题型:解答题

已知函数(a∈R),将y=f(x)的图象向右平移两个单位,得到函数y=g(x)的图象,函数y=h(x)与函数y=g(x)的图象关于直线y=1对称.
(Ⅰ)求函数y=g(x)和y=h(x)的解析式;
(Ⅱ)若方程f(x)=a在x∈[0,1]上有且仅有一个实根,求a的取值范围;
(Ⅲ)设F(x)=f(x)+h(x),已知F(x)>2+3a对任意的x∈(1,+∞)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省宿州市灵璧中学高二(上)第二次月考数学试卷(文科)(解析版) 题型:选择题

已知直线(a∈R)和椭圆,则直线和椭圆相交有( )
A.两个交点
B.一个交点
C.没有交点
D.无法判断

查看答案和解析>>

同步练习册答案