精英家教网 > 高中数学 > 题目详情
16.设函数f(x)=$\left\{\begin{array}{l}{3x-5,x≥6}\\{f(x+3),x<6}\end{array}\right.$,则f(2)=19.

分析 根据定义域范围代值计算即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{3x-5,x≥6}\\{f(x+3),x<6}\end{array}\right.$,
∵2<6,
∴f(2)=f(2+3)=f(5);
又5<6,
∴f(5)=f(5+3)=f(8);
8>6,
∴f(8)=3×8-5=19.
所以得f(2)=19.
故答案为:19.

点评 本题考查了对函数的定义域和解析式的理解和带值计算能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{2}$x2-ax-1,x∈[-5,5]
(1)当a=2,求函数f(x)的最大值和最小值;
(2)若函数f(x)在定义域内是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知平面向量$\overrightarrow a$=(1,-2),$\overrightarrow b$=(2,m),且$\overrightarrow a$∥$\overrightarrow b$,则3$\overrightarrow a$+2$\overrightarrow b$=(  )
A.(7,2)B.(7,-14)C.(7,-4)D.(7,-8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各组函数中,表示同一函数的是(  )
A.$f(x)=x,g(x)=\sqrt{x^2}$B.$f(x)=\frac{{{x^2}-1}}{x-1},g(x)=x+1$
C.$f(x)=x,g(x)=\root{3}{x^3}$D.$f(x)=|x|,\;g(x)={(\sqrt{x})^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\left\{\begin{array}{l}{2^x},\;\;x≤1\\-{x^2}+2x+1,\;\;x>1\end{array}$的值域是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.计算:${0.064^{-\frac{1}{3}}}-{(-\frac{1}{8})^0}+{16^{\frac{3}{4}}}+{0.25^{\frac{1}{2}}}$=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=ax(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)$\sqrt{x}$在[0,+∞)上是增函数,则m=$\frac{1}{16}$,a=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.△ABC中,角A,B,C所对的边分别为a,b,c,S表示三角形的面积,若asinA+bsinB=csinC,且S=$\frac{1}{4}({a^2}+{c^2}-{b^2})$,则对△ABC的形状的精确描述是(  )
A.直角三角形B.等腰三角形
C.等腰或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|$\frac{1}{x}$-1|,其中x>0
(1)求f(x)的单调区间;
(2)是否存在实数a,b ( 0<a<b ),使得函数f(x)的定义域和值域都是[a,b]若存在,请求出a,b的值;若不存在,请说明理由;
(3)若存在实数a,b ( 0<a<b ),使得函数f(x)的定义域是[0,b],值域是[ma,mb]( m≠0 ),求实数 m的范围.

查看答案和解析>>

同步练习册答案