精英家教网 > 高中数学 > 题目详情
设f(x)是定义在[1+a,2]上偶函数,则f(x)=ax2+bx-2在区间[0,2]上是(  )
A、增函数B、先增后减函数C、减函数D、与a,b有关,不能确定
分析:根据偶函数定义域的特点解出a,然后根据二次函数的图象和性质进行判断即可.
解答:解:∵f(x)是定义在[1+a,2]上偶函数,
∴定义域关于原点对称,
即1+a+2=0,
∴a=-3,
则f(x)=ax2+bx-2=-3x2+bx-2,
∵f(-x)=-3x2-bx-2=-3x2+bx-2,
∴-b=b,解得b=0,
∴f(x)=-3x2-2,
即抛物线开口向下,对称轴为x=0,
则函数在区间[0,2]上是减函数.
故选:C.
点评:本题主要考查函数奇偶性的应用和判断,利用函数奇偶性的定义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=
12
对称,则f(1)+f(2)+f(3)+f(4)+f(5)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

例2.设f(x)是定义在[-3,
2
]上的函数,求下列函数的定义域(1)y=f(
x
-2)
(2)y=f(
x
a
)(a≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在[-1,1]上的奇函数,g(x)的图象与f(x)的图象关于直线x=1对称,而当x∈[2,3]时,g(x)=-x2+4x-4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)对任意x1,x2∈[0,1],且x1≠x2,求证:|f(x2)-f(x1)|<2|x2-x1|;
(Ⅲ)对任意x1,x2∈[0,1],且x1≠x2,求证:|f(x2)-f(x1)|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图象,则f(2013)+f(2014)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江一模)设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x-2)=f(x+2)且当x∈[-2,0]时,f(x)=(
1
2
x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是
34
,2)
34
,2)

查看答案和解析>>

同步练习册答案