精英家教网 > 高中数学 > 题目详情
已知向量,设函数,x∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若,求函数f(x)值域.
【答案】分析:(Ⅰ)利用向量的数量积公式,确定函数解析式,利用辅助角公式化简函数,从而可得函数的最小正周期;
(Ⅱ)由(Ⅰ)知,根据,确定,从而可得,进而可得函数f(x)的值域.
解答:解:(Ⅰ)∵向量
=.(4分)
所以其最小正周期为.(6分)
(Ⅱ)由(Ⅰ)知
又∵,∴
.(10分)
所以函数f(x)的值域为.(12分)
点评:本题考查向量的数量积,考查三角函数的化简,考查三角函数的性质,利用辅助角公式化简函数是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年山东省威海市乳山一中高三(上)12月月考数学试卷(文科)(解析版) 题型:解答题

已知向量,设函数的图象关于直线对称,其中ω为常数,且ω∈(0,1).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若将y=f(x)图象上各点的横坐标变为原来的,再将所得图象向右平移个单位,纵坐标不变,得到y=h(x)的图象,若关于x的方程h(x)+k=0在区间上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省青岛市黄岛开发区一中高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

已知向量,设函数,若函数g(x)的图象与f(x)的图象关于坐标原点对称.
(Ⅰ)求函数g(x)在区间[-]上的最大值,并求出此时x的值;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,A为锐角,若f(A)-g(A)=,b+c=7,△ABC的面积为2,求边a的长.

查看答案和解析>>

科目:高中数学 来源:2012年辽宁省沈阳市高考数学二模试卷(文科)(解析版) 题型:解答题

已知向量,设函数,x∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若,求函数f(x)值域.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三第七次模拟考试文科数学试卷(解析版) 题型:解答题

已知向量,设函数.

(Ⅰ)求函数的最小正周期;

(Ⅱ)在中,若的面积为,求实数的值.

 

查看答案和解析>>

同步练习册答案