·ÖÎö £¨1£©ÓÉf£¨x£©µÄͼÏó²»¼ä¶Ï£¬¿ÉµÃf£¨0£©=1£¬f£¨4£©=0£¬½â·½³Ì¿ÉµÃm£¬n£»
£¨2£©ÔËÓÃÖ¸Êýº¯ÊýµÄµ¥µ÷ÐÔ£¬¿ÉµÃa£¼0£¬Çó³öÈý´Îº¯ÊýµÄµ¼Êý£¬Çó³ö¶Ô³ÆÖᣬÅбðʽСÓÚµÈÓÚ0£¬½â²»µÈʽ¿ÉµÃaµÄ·¶Î§£»
£¨3£©ÓÉÌâÒâ¿ÉµÃy=x3+£¨b-4£©x2-£¨4b+$\frac{1}{4}$£©x+1£¬y¡ä=3x2+2£¨b-4£©x-£¨4b+$\frac{1}{4}$£©£¬¡÷=4£¨b-4£©2+12£¨4b+$\frac{1}{4}$£©=4b2+16b+67£¾0£¬ÇóµÃº¯ÊýyµÄµ¥µ÷Çø¼äºÍ¼«Öµ£¬¶ÔbÌÖÂÛ£¬¢Ùµ±b£¾0ʱ£¬¢Úµ±b£¼-1ʱ£¬¢Ûµ±-1£¼b£¼0ʱ£¬¢Üµ±b=0ʱ£¬¢Ýµ±b=-1ʱ£¬ÔËÓýⷽ³ÌºÍº¯ÊýÁãµã´æÔÚ¶¨Àí£¬¼´¿ÉµÃµ½Áãµã¸öÊý£®
½â´ð ½â£º£¨1£©ÓÉf£¨x£©µÄͼÏó²»¼ä¶Ï£¬¿ÉµÃf£¨0£©=1£¬f£¨4£©=0£¬
¼´Îªn=1£¬64a+16£¨b-4a£©-4£¨4b+m£©+n=0£¬½âµÃm=$\frac{1}{4}$£¬n=1£»
£¨2£©ÓÉy=2-xÔÚRÉϵݼõ£¬¿ÉµÃf£¨x£©ÊÇRÉϵĵ¥µ÷º¯Êý£¬
ÔòÔÚy=a£¨log4x-1£©ÖУ¬y¡ä=$\frac{a}{xln4}$£¼0£¬¹Êa£¼0£»
ÔÚy=ax3+£¨b-4a£©x2-£¨4b+$\frac{1}{4}$£©x+1ÖУ¬ÓÉa+b=0£¬y¡ä=3ax2-10ax+4a-$\frac{1}{4}$£¬
¶Ô³ÆÖáΪx=$\frac{5}{3}$£¬¡÷=100a2-12a£¨4a-$\frac{1}{4}$£©¡Ü0£¬½âµÃ-$\frac{3}{52}$¡Üa£¼0£»
£¨3£©ÓÉÌâÒâ¿ÉµÃy=x3+£¨b-4£©x2-£¨4b+$\frac{1}{4}$£©x+1£¬y¡ä=3x2+2£¨b-4£©x-£¨4b+$\frac{1}{4}$£©£¬
¡÷=4£¨b-4£©2+12£¨4b+$\frac{1}{4}$£©=4b2+16b+67£¾0£¬
ËùÒÔ¹ØÓÚxµÄ·½³Ì£¬y¡ä=0ÓÐÁ½¸ö²»µÈʵ¸ùx1£¬x2£¨x1£¼x2£©£¬
µ±x£¼x1ʱ£¬y¡ä£¾0£¬º¯ÊýyµÝÔö£»µ±x1£¼x£¼x2ʱ£¬y¡ä£¼0£¬º¯ÊýyµÝ¼õ£»µ±x£¾x2ʱ£¬y¡ä£¾0£¬º¯ÊýyµÝÔö£®
¼´Óк¯ÊýyÔÚx1´¦È¡µÃ¼«´óÖµ£¬ÔÚx2´¦È¡µÃ¼«Ð¡Öµ£®
¢Ùµ±b£¾0ʱ£¬2-x+b=0Î޽⣬log4x-1+b=0Î޽⣮
ÓÖf£¨0£©+b=1+b£¾0£¬f£¨4£©+b=b£¾0£¬f£¨2£©+b=8+4£¨b-4£©-2£¨4b+$\frac{1}{4}$£©+1+b=-$\frac{15}{2}$-3b£¼0£¬
f£¨x£©+b=0ÔÚ£¨0£¬4£©ÓÐÁ½½â£¬Ôòg£¨x£©=f£¨x£©+b¹²ÓÐ2¸öÁãµã£»
¢Úµ±b£¼-1ʱ£¬2-x+b=0ÓÐÒ»½âx=log${\;}_{\frac{1}{2}}$£¨-b£©£¬log4x-1+b=0ÓÐÒ»½âx=41-b£¬
ÓÖf£¨0£©+b=1+b£¼0£¬f£¨4£©+b=b£¼0£¬f£¨$\frac{1}{2}$£©+b=$\frac{1}{8}$+$\frac{1}{4}$£¨b-4£©-$\frac{1}{2}$£¨4b+$\frac{1}{4}$£©+1+b=-$\frac{3}{4}$b£¾0£¬
Ôòf£¨x£©+b=0ÔÚ£¨0£¬4£©ÓÐ4½â£¬Ôòg£¨x£©=f£¨x£©+b¹²ÓÐ4¸öÁãµã£»
¢Ûµ±-1£¼b£¼0ʱ£¬2-x+b=0Î޽⣬log4x-1+b=0ÓÐÒ»½âx=41-b£¬
ÓÖf£¨0£©+b=1+b£¾0£¬f£¨4£©+b=b£¼0£¬
Ôòf£¨x£©+b=0ÔÚ£¨0£¬4£©ÓÐ2½â£¬Ôòg£¨x£©=f£¨x£©+b¹²ÓÐ2¸öÁãµã£»
¢Üµ±b=0ʱ£¬ÓÐx=4ºÍx=$\frac{1}{2}$Á½¸ö½â£»
¢Ýµ±b=-1ʱ£¬ÓÐx=0£¬x=16£¬x=$\frac{5-\sqrt{10}}{2}$Èý¸ö½â£®
×ÛÉϿɵ㬵±b£¾-1ʱ£¬g£¨x£©ÓÐ2¸öÁãµã£»µ±µ±b=-1ʱ£¬g£¨x£©ÓÐ3¸öÁãµã£»
µ±b£¼-1ʱ£¬g£¨x£©ÓÐ4¸öÁãµã£®
µãÆÀ ±¾Ì⿼²éº¯ÊýµÄÐÔÖʺÍÓ¦Óã¬Ö÷ÒªÊǺ¯ÊýµÄµ¥µ÷ÐԺͺ¯ÊýµÄÁãµã¸öÊý£¬×¢ÒâÔËÓÃÖ¸Êýº¯ÊýºÍ¶ÔÊýº¯ÊýµÄµ¥µ÷ÐÔ£¬ÒÔ¼°×ª»¯Ë¼ÏëºÍ·ÖÀàÌÖÂÛ˼Ïë·½·¨£¬ÕýÈ··ÖÀàºÍÔËÓÃÁãµã´æÔÚ¶¨ÀíÊǽâÌâµÄ¹Ø¼ü£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{{\sqrt{3}}}{2}$ | B£® | $\frac{1}{2}$ | C£® | $-\frac{1}{2}$ | D£® | $-\frac{{\sqrt{3}}}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [$\frac{1}{2e}$£¬$\frac{ln6+6}{6}$] | B£® | [$\frac{1}{e}$£¬$\frac{ln6+6}{3}$] | C£® | [$\frac{1}{e}$£¬$\frac{ln3+6}{3}$] | D£® | [$\frac{1}{2e}$£¬$\frac{ln3+6}{6}$] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 9£¬11 | B£® | 10£¬10 | C£® | 8£¬10 | D£® | 10£¬11 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com