1£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{-x}£¬x£¼0}\\{a{x}^{3}+£¨b-4a£©{x}^{2}-£¨4b+m£©x+n£¬0¡Üx¡Ü4}\\{a£¨lo{g}_{4}x-1£©£¬x£¾4}\end{array}\right.$£¬£¨ÆäÖÐa¡Ù0£©µÄͼÏó²»¼ä¶Ï£®
£¨1£©Çóm£¬nµÄÖµ£»
£¨2£©Èôa£¬b»¥ÎªÏà·´Êý£¬ÇÒf£¨x£©ÊÇRÉϵĵ¥µ÷º¯Êý£¬ÇóaµÄȡֵ·¶Î§£»
£¨3£©Èôa=1£¬b¡ÊR£¬ÊÔÌÖÂÛº¯Êýg£¨x£©=f£¨x£©+bµÄÁãµã¸öÊý£¬²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉf£¨x£©µÄͼÏó²»¼ä¶Ï£¬¿ÉµÃf£¨0£©=1£¬f£¨4£©=0£¬½â·½³Ì¿ÉµÃm£¬n£»
£¨2£©ÔËÓÃÖ¸Êýº¯ÊýµÄµ¥µ÷ÐÔ£¬¿ÉµÃa£¼0£¬Çó³öÈý´Îº¯ÊýµÄµ¼Êý£¬Çó³ö¶Ô³ÆÖᣬÅбðʽСÓÚµÈÓÚ0£¬½â²»µÈʽ¿ÉµÃaµÄ·¶Î§£»
£¨3£©ÓÉÌâÒâ¿ÉµÃy=x3+£¨b-4£©x2-£¨4b+$\frac{1}{4}$£©x+1£¬y¡ä=3x2+2£¨b-4£©x-£¨4b+$\frac{1}{4}$£©£¬¡÷=4£¨b-4£©2+12£¨4b+$\frac{1}{4}$£©=4b2+16b+67£¾0£¬ÇóµÃº¯ÊýyµÄµ¥µ÷Çø¼äºÍ¼«Öµ£¬¶ÔbÌÖÂÛ£¬¢Ùµ±b£¾0ʱ£¬¢Úµ±b£¼-1ʱ£¬¢Ûµ±-1£¼b£¼0ʱ£¬¢Üµ±b=0ʱ£¬¢Ýµ±b=-1ʱ£¬ÔËÓýⷽ³ÌºÍº¯ÊýÁãµã´æÔÚ¶¨Àí£¬¼´¿ÉµÃµ½Áãµã¸öÊý£®

½â´ð ½â£º£¨1£©ÓÉf£¨x£©µÄͼÏó²»¼ä¶Ï£¬¿ÉµÃf£¨0£©=1£¬f£¨4£©=0£¬
¼´Îªn=1£¬64a+16£¨b-4a£©-4£¨4b+m£©+n=0£¬½âµÃm=$\frac{1}{4}$£¬n=1£»
£¨2£©ÓÉy=2-xÔÚRÉϵݼõ£¬¿ÉµÃf£¨x£©ÊÇRÉϵĵ¥µ÷º¯Êý£¬
ÔòÔÚy=a£¨log4x-1£©ÖУ¬y¡ä=$\frac{a}{xln4}$£¼0£¬¹Êa£¼0£»
ÔÚy=ax3+£¨b-4a£©x2-£¨4b+$\frac{1}{4}$£©x+1ÖУ¬ÓÉa+b=0£¬y¡ä=3ax2-10ax+4a-$\frac{1}{4}$£¬
¶Ô³ÆÖáΪx=$\frac{5}{3}$£¬¡÷=100a2-12a£¨4a-$\frac{1}{4}$£©¡Ü0£¬½âµÃ-$\frac{3}{52}$¡Üa£¼0£»
£¨3£©ÓÉÌâÒâ¿ÉµÃy=x3+£¨b-4£©x2-£¨4b+$\frac{1}{4}$£©x+1£¬y¡ä=3x2+2£¨b-4£©x-£¨4b+$\frac{1}{4}$£©£¬
¡÷=4£¨b-4£©2+12£¨4b+$\frac{1}{4}$£©=4b2+16b+67£¾0£¬
ËùÒÔ¹ØÓÚxµÄ·½³Ì£¬y¡ä=0ÓÐÁ½¸ö²»µÈʵ¸ùx1£¬x2£¨x1£¼x2£©£¬
µ±x£¼x1ʱ£¬y¡ä£¾0£¬º¯ÊýyµÝÔö£»µ±x1£¼x£¼x2ʱ£¬y¡ä£¼0£¬º¯ÊýyµÝ¼õ£»µ±x£¾x2ʱ£¬y¡ä£¾0£¬º¯ÊýyµÝÔö£®
¼´Óк¯ÊýyÔÚx1´¦È¡µÃ¼«´óÖµ£¬ÔÚx2´¦È¡µÃ¼«Ð¡Öµ£®
¢Ùµ±b£¾0ʱ£¬2-x+b=0Î޽⣬log4x-1+b=0Î޽⣮
ÓÖf£¨0£©+b=1+b£¾0£¬f£¨4£©+b=b£¾0£¬f£¨2£©+b=8+4£¨b-4£©-2£¨4b+$\frac{1}{4}$£©+1+b=-$\frac{15}{2}$-3b£¼0£¬
f£¨x£©+b=0ÔÚ£¨0£¬4£©ÓÐÁ½½â£¬Ôòg£¨x£©=f£¨x£©+b¹²ÓÐ2¸öÁãµã£»
¢Úµ±b£¼-1ʱ£¬2-x+b=0ÓÐÒ»½âx=log${\;}_{\frac{1}{2}}$£¨-b£©£¬log4x-1+b=0ÓÐÒ»½âx=41-b£¬
ÓÖf£¨0£©+b=1+b£¼0£¬f£¨4£©+b=b£¼0£¬f£¨$\frac{1}{2}$£©+b=$\frac{1}{8}$+$\frac{1}{4}$£¨b-4£©-$\frac{1}{2}$£¨4b+$\frac{1}{4}$£©+1+b=-$\frac{3}{4}$b£¾0£¬
Ôòf£¨x£©+b=0ÔÚ£¨0£¬4£©ÓÐ4½â£¬Ôòg£¨x£©=f£¨x£©+b¹²ÓÐ4¸öÁãµã£»
¢Ûµ±-1£¼b£¼0ʱ£¬2-x+b=0Î޽⣬log4x-1+b=0ÓÐÒ»½âx=41-b£¬
ÓÖf£¨0£©+b=1+b£¾0£¬f£¨4£©+b=b£¼0£¬
Ôòf£¨x£©+b=0ÔÚ£¨0£¬4£©ÓÐ2½â£¬Ôòg£¨x£©=f£¨x£©+b¹²ÓÐ2¸öÁãµã£»
¢Üµ±b=0ʱ£¬ÓÐx=4ºÍx=$\frac{1}{2}$Á½¸ö½â£»
¢Ýµ±b=-1ʱ£¬ÓÐx=0£¬x=16£¬x=$\frac{5-\sqrt{10}}{2}$Èý¸ö½â£®
×ÛÉϿɵ㬵±b£¾-1ʱ£¬g£¨x£©ÓÐ2¸öÁãµã£»µ±µ±b=-1ʱ£¬g£¨x£©ÓÐ3¸öÁãµã£»
µ±b£¼-1ʱ£¬g£¨x£©ÓÐ4¸öÁãµã£®

µãÆÀ ±¾Ì⿼²éº¯ÊýµÄÐÔÖʺÍÓ¦Óã¬Ö÷ÒªÊǺ¯ÊýµÄµ¥µ÷ÐԺͺ¯ÊýµÄÁãµã¸öÊý£¬×¢ÒâÔËÓÃÖ¸Êýº¯ÊýºÍ¶ÔÊýº¯ÊýµÄµ¥µ÷ÐÔ£¬ÒÔ¼°×ª»¯Ë¼ÏëºÍ·ÖÀàÌÖÂÛ˼Ïë·½·¨£¬ÕýÈ··ÖÀàºÍÔËÓÃÁãµã´æÔÚ¶¨ÀíÊǽâÌâµÄ¹Ø¼ü£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒSnÂú×ãn£¨n+1£©Sn2+£¨n2+n-1£©Sn-1=0£¨n¡ÊN*£©£¬ÔòS1+S2+¡­+S2017=$\frac{2017}{2018}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¼ÆËãsin21¡ãcos9¡ã+sin69¡ãsin9¡ãµÄ½á¹ûÊÇ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{3}}}{2}$B£®$\frac{1}{2}$C£®$-\frac{1}{2}$D£®$-\frac{{\sqrt{3}}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©µÄͼÏó¹ØÓÚyÖá¶Ô³Æ£¬ÇÒf£¨x£©ÔÚ[0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬Èô¹ØÓÚxµÄ²»µÈʽf£¨2mx-lnx-3£©¡Ý2f£¨3£©-f£¨-2mx+lnx+3£©ÔÚx¡Ê[1£¬3]ÉϺã³ÉÁ¢£¬ÔòʵÊýmµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®[$\frac{1}{2e}$£¬$\frac{ln6+6}{6}$]B£®[$\frac{1}{e}$£¬$\frac{ln6+6}{3}$]C£®[$\frac{1}{e}$£¬$\frac{ln3+6}{3}$]D£®[$\frac{1}{2e}$£¬$\frac{ln3+6}{6}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=ax-lnax+x2£¨a£¾0£¬a¡Ù1£©
£¨¢ñ£©Çóº¯Êýf£¨x£©Ôڵ㣨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³Ì
£¨¢ò£©Çóº¯Êýf£¨x£©µ¥µ÷µÝÔöÇø¼ä
£¨¢ó£©Èô´æÔÚx1£¬x2¡Ê[-1£¬1]£¬Ê¹µÃ|f£¨x1£©-f£¨x2£©|¡Ýe-1£¨eÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£©£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®»¯¼ò£º
£¨1£©sin¦Ácos¦Á£¨tan¦Á+cot¦Á£©£»
£¨2£©$\frac{{\sqrt{1-2sin¦Ècos¦È}}}{{sin¦È-\sqrt{1-{{sin}^2}¦È}}}$£¨ÆäÖÐ$¦È¡Ê£¨{0£¬\frac{¦Ð}{4}}£©$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬Æ½ÃæPAB¡ÍÆ½ÃæABCD£¬AD¡ÎBC£¬PA¡ÍAB£¬CD¡ÍAD£¬BC=CD=$\frac{1}{2}$AD£¬EΪADµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºPA¡ÍCD£»
£¨¢ò£©ÇóÖ¤£ºÆ½ÃæPBD¡ÍÆ½ÃæPAB£»
£¨¢ó£©ÔÚÆ½ÃæPABÄÚÊÇ·ñ´æÔÚM£¬Ê¹µÃÖ±ÏßCM¡ÎÆ½ÃæPBE£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªf£¨¦Á£©=$\frac{cos£¨\frac{¦Ð}{2}+¦Á£©•cos£¨¦Ð-¦Á£©}{sin£¨¦Ð+¦Á£©}$£®
£¨1£©»¯¼òf£¨¦Á£©£»
£¨2£©Èô¦ÁÊǵÚÈýÏóÏ޽ǣ¬ÇÒcos£¨¦Á-$\frac{3¦Ð}{2}$£©=$\frac{1}{5}$£¬Çóf£¨¦Á£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖª×ÜÌåÖи÷¸öÌåµÄÖµÓÉСµ½´óÒÀ´ÎΪ2£¬3£¬3£¬7£¬a£¬b£¬12£¬15£¬18£¬20£¨a£¬b¡ÊN*£©£¬ÇÒ×ÜÌåµÄÖÐλÊýΪ10£¬ÈôҪʹ¸Ã×ÜÌåµÄ·½²î×îС£¬Ôòa£¬bµÄȡֵ·Ö±ðÊÇ£¨¡¡¡¡£©
A£®9£¬11B£®10£¬10C£®8£¬10D£®10£¬11

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸