精英家教网 > 高中数学 > 题目详情

函数f(x)对任意的实数x,y,均有f(x+y)=f(x)+f(y),且当x>0,f(x)<0.
(1)判断函数f(x)的奇偶性并说明理由;
(2)证明:函数f(x)在R上是减函数;
(3)若y=f(ax2-a2x)-f[(a+1)(x-1)]在x∈(0,2)上有零点,求a的范围.

解:(1)∵f(x+y)=f(x)+f(y),
令y=x=0
则f(0)=f(0)+f(0)
∴f(0)=0
令y=-x
则f(x)+f(-x)=f(0)=0
∴f(x)为奇函数…(3分)
证明:(2)任意的x1,x2∈R,x1<x2,设x2=x1+t,t>0
f(x1)-f(x2)=f(x1)-f(x1+t)=f(x1)-f(x1)-f(t)=-f(t)>0
∴f(x1)>f(x2),
故f(x)在R上是减函数…(2分)
解:(3)∵y=f(ax2-a2x)-f[(a+1)(x-1)]=0
∴f(ax2-a2x)=f[(a+1)(x-1)]
即ax2-a2x=(a+1)(x-1)
∴ax2-(a2+a+1)x+a+1=(ax-1)[x-(a+1)]=0…(1分)
①a=0时,x=1∈(0,2)符合…(1分)
②a≠0时,则∈(0,2)或a+1∈(0,2)
∴a≥或-1<a<1且a≠0…(2分)
综上a∈(-1,+∞)…(1分)
分析:(1)令y=x=0,可得f(0)=0,令y=-x,可得f(x)+f(-x)=0,进而根据奇偶性定义可得答案;
(2)任意的x1,x2∈R,x1<x2,设x2=x1+t,t>0,结合f(x+y)=f(x)+f(y),及x>0,f(x)<0可判断f(x1)-f(x2)的符号,进而根据单调性的定义得到结论
(3)当y=f(ax2-a2x)-f[(a+1)(x-1)]在x∈(0,2)上有零点,则方程f(ax2-a2x)=f[(a+1)(x-1)]有根,根据(2)的结论可得ax2-a2x=(a+1)(x-1)有根.分类讨论后可得答案.
点评:本题考查的知识点是抽象函数及其应用,函数的零点,其中“凑”的思想是解决抽象函数的关键,而(3)的关键是借助(2)的结论,脱却函数符号,构造方程ax2-a2x=(a+1)(x-1)有根.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)对任意的实数x,y都有f(x+y)=f(x)+f(y)+2y(x+y)+1且f(1)=1.
(1)若x∈N*,试求f(x)的解析式;
(2)若x∈N*,且x≥2时,不等式f(x)≥(a+7)x-(a+10)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)对任意的实数x,存在常数M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函,下面四个函数:
①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)x;④f(x)=
xx2+x+1

其中属于有界泛函的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)对任意的实数x,存在常数M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函数,下面四个函数:①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)x;④f(x)=
x
x2+x+1

其中属于有界泛函数的是(  )
A、①②B、①③C、③④D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)对任意的正实数x1,x2(x1≠x2),恒有(x1-x2)(f(x1)-f(x2))>0,则一定正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对任意的实数x1,x2∈D,均有|f(x2)-f(x1)|≤|x2-x1|,则称函数f(x)是区间D上的“平缓函数”,
(1)判断g(x)=sinx和h(x)=x2-x是不是实数集R上的“平缓函数”,并说明理由;
(2)若数列{xn}对所有的正整数n都有 |xn+1-xn|≤
1
(2n+1)2
,设yn=sinxn,求证:|yn+1-y1|<
1
4

查看答案和解析>>

同步练习册答案