精英家教网 > 高中数学 > 题目详情
1+2++2++2+…+2+等于(    )

A.2·32 006            B.2·32 005                C.3·22 006          D.3·22 005

解析:原式=(+++…+)+(+++…+)=22006+22 005=3·22 005.

答案:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在计算“1×2+2×3+…+n(n+1)”时,有如下方法:
先改写第k项:k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(K+1)],
由此得:1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3),…,
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],
相加得:1×2+2×3+…+n(n+1)=
1
3
n
(n+1)(n+2).
类比上述方法,请你计算“1×3+2×4+…+n(n+2)”,其结果写成关于n的一次因式的积的形式为:
1
6
n(n+1)(2n+7)
1
6
n(n+1)(2n+7)

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练6练习卷(解析版) 题型:解答题

某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.S4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:

产品编号

A1

A2

A3

A4

A5

质量指标(x,y,z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

 

 

 

 

 

 

产品编号

A6

A7

A8

A9

A10

质量指标(x,y,z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(1)利用上表提供的样本数据估计该批产品的一等品率;

(2)在该样本的一等品中,随机抽取2件产品,

①用产品编号列出所有可能的结果;

②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4,求事件B发生的概率.

 

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试文科数学(新课标1卷解析版) 题型:解答题

(本小题满分共12分)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:

服用A药的20位患者日平均增加的睡眠时间:

0.6   1.2   2.7   1.5    2.8   1.8   2.2   2.3    3.2   3.5

2.5   2.6   1.2   2.7    1.5   2.9   3.0   3.1    2.3   2.4

服用B药的20位患者日平均增加的睡眠时间:

3.2    1.7     1.9     0.8     0.9    2.4     1.2     2.6     1.3     1.4

1.6    0.5     1.8     0.6     2.1    1.1     2.5     1.2     2.7     0.5

(1)分别计算两组数据的平均数,从计算结果来看,哪种药的效果好?

(2)完成茎叶图,从茎叶图来看,哪种药疗效更好?

 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在计算“1×2+2×3+…+n(n+1)”时,有如下方法:
先改写第k项:k(k+1)=数学公式[k(k+1)(k+2)-(k-1)k(K+1)],
由此得:1×2=数学公式(1×2×3-0×1×2),
2×3=数学公式(2×3×4-1×2×3),…,
n(n+1)=数学公式[n(n+1)(n+2)-(n-1)n(n+1)],
相加得:1×2+2×3+…+n(n+1)=数学公式(n+1)(n+2).
类比上述方法,请你计算“1×3+2×4+…+n(n+2)”,其结果写成关于n的一次因式的积的形式为:________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三第五次阶段考试文科数学试卷(解析版) 题型:解答题

在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等。

(1)求取出的两个球上标号为相邻整数的概率;

(2)求取出的两个球上标号之和能被3整除的概率.

【解析】本试题主要考查了古典概型概率的求解。第一问中,基本事件数为共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),

(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)

总数为16种.其中取出的两个小球上标号为相邻整数的基本事件有:

(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6种利用古典概型可知,P=3 /8 ;

(2)其中取出的两个小球上标号之和能被3整除的基本事件有:

(1,2),(2,1),(2,4),(3,3),(4,2)共5种可得概率值5 /16 ;

解:甲、乙两个盒子里各取出1个小球计为(X,Y)则基本事件

共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),

(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)

总数为16种.

(1)其中取出的两个小球上标号为相邻整数的基本事件有:

(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6种

故取出的两个小球上标号为相邻整数的概率P=3 /8 ;

(2)其中取出的两个小球上标号之和能被3整除的基本事件有:

(1,2),(2,1),(2,4),(3,3),(4,2)共5种

故取出的两个小球上标号之和能被3整除的概率为5 /16 ;

 

查看答案和解析>>

同步练习册答案