精英家教网 > 高中数学 > 题目详情

已知指数函数满足:,定义域为的函数是奇函数.求:
(1)确定的解析式;ks5u
(2)求的值;
(3)若对任意的,不等式恒成立,求实数的取值范围.

(1)可设,又,得,所以
(2)是奇函数,所以,得
又由,得
(3)由(2)知,易知上为减函数。
又因是奇函数,从而不等式:
等价于
为减函数,由上式推得: 即对一切有:
从而判别式 

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分12分)已知指数函数满足:,定义域为的函数是奇函数。(Ⅰ)求的值;(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:2011年山东省济南外国语学校高一入学检测数学试卷 题型:解答题

((本小题12分)
已知指数函数满足:g(2)=4,定义域为的函数是奇函数。
(1)确定的解析式;
(2)求mn的值;
(3)若对任意的,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:2011年山西省高一2月月考数学试卷 题型:解答题

.已知指数函数满足:g(2)=4,定义域为的函数是奇函数。

(1)确定的解析式;

(2)求mn的值;

(3)若对任意的,不等式恒成立,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2010年河南省郑州外国语学校高一上学期期中考试数学卷 题型:解答题

(本题10分)已知指数函数满足:g(2)=4,定义域为的函数是奇函数。

(1)确定的解析式;

(2)求mn的值;

(3)若对任意的,不等式恒成立,求实数的取值范围。

 

查看答案和解析>>

同步练习册答案