精英家教网 > 高中数学 > 题目详情
如图,直棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=
2
2
AB.
(Ⅰ)证明:BC1平面A1CD
(Ⅱ)求二面角D-A1C-E的正弦值.
(Ⅰ)证明:连结AC1交A1C于点F,则F为AC1的中点,
又D是AB中点,连结DF,则BC1DF,
因为DF?平面A1CD,BC1?平面A1CD,
所以BC1平面A1CD.
(Ⅱ)因为直棱柱ABC-A1B1C1,所以AA1⊥CD,
由已知AC=CB,D为AB的中点,所以CD⊥AB,
又AA1∩AB=A,于是,CD⊥平面ABB1A1
设AB=2
2
,则AA1=AC=CB=2,得∠ACB=90°,
CD=
2
,A1D=
6
,DE=
3
,A1E=3
故A1D2+DE2=A1E2,即DE⊥A1D,所以DE⊥平面A1DC,
又A1C=2
2
,过D作DF⊥A1C于F,∠DFE为二面角D-A1C-E的平面角,
在△A1DC中,DF=
A1D•DC
A1C
=
6
2
,EF=
DE2+DF2
=
3
2
2

所以二面角D-A1C-E的正弦值.sin∠DFE=
DE
EF
=
6
3

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,斜三棱柱的底面是直角三角形,,点在底面内的射影恰好是的中点,且

(1)求证:平面平面;
(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正四棱柱ABCD-A1B1C1D1中,AA1=
2
,AB=1
,E是DD1的中点.
(1)求证:AC⊥B1D;
(2)求二面角E-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
(Ⅰ)求证:平面PAC⊥平面PBC;
(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1中,AB⊥BC,E为棱CC1的中点,已知AB=
2
,BB1=2,BC=1.
(1)证明:BE是异面直线AB与EB1的公垂线;
(2)求二面角A-EB1-A1的大小;
(3)求点A1到面AEB1的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD底面是平行四边形,面PAB⊥面ABCD,PA=PB=AB=
1
2
AD,∠BAD=60°,E,F分别为AD,PC的中点.
(1)求证:EF面PAB
(2)求证:EF⊥面PBD
(3)求二面角D-PA-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱锥PABC中,不能证明的条件是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设m,n是两条不同的直线,α,β是两个不同的平面,给出下列命题:
①若α∥β,m?β,n?α,则m∥n;
②若α∥β,m⊥β,n∥α,则m⊥n;
③若α⊥β,m⊥α,n∥β,则m∥n;
④若α⊥β,m⊥α,n⊥β,则m⊥n.
上面命题中,所有真命题的序号为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,ABCD-A1B1C1D1是长方体,AA1=a,∠BAB1=∠B1A1C1=30°,则AB与A1C1所成的角为________,AA1与B1C所成的角为________.

查看答案和解析>>

同步练习册答案