精英家教网 > 高中数学 > 题目详情
四棱锥P-ABCD底面是平行四边形,面PAB⊥面ABCD,PA=PB=AB=
1
2
AD,∠BAD=60°,E,F分别为AD,PC的中点.
(1)求证:EF面PAB
(2)求证:EF⊥面PBD
(3)求二面角D-PA-B的余弦值.
(1)证明:取PB的中点为M连结AM,MF,因为F为PC的中点,所以FM
.
1
2
BC,又ABCD是平行四边形,
E为AD的中点,所以AMFE是平行四边形,
所以EF面PAB.
(2)因为PA=PB=AB=
1
2
AD
,M是PB的中点,所以AM⊥PB,∠BAD=60°,所以AB⊥BD,
因为面PAB⊥面ABCD,所以BD⊥平面PAB,所以AM⊥BD,
又PB∩BD=B,所以AM⊥面PBD.EFAM,
所以EF⊥面PBD.
(3)由(2)可知BD⊥平面PAB,作BN⊥PA于N,
显然N是PA的中点,连结ND,
则∠BND就是二面角D-PA-B的平面角,
PA=PB=AB=
1
2
AD
=2,所以AN=1,AD=4,BD=
42-22
=
12

BN=
22-12
=
3
,所以ND=
(
12
)2+(
3
)2
=
15

所以二面角D-PA-B的余弦值为:
BN
DN
=
3
15
=
5
5

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥底面,四边形是直角梯形,,,,.

(1)求证:平面⊥平面
(2)求点C到平面的距离;
(3)求PC与平面PAD所成的角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且=2.求证:直线EG,FH,AC相交于一点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a.
(I)若M是底面ABCD的一个动点,且满足|MB|=|MS|,求点M在正方形ABCD内的轨迹;
(II)试问在线段SD上是否存在点E,使二面角C-AE-D的大小为60°?若存在,确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱锥S-ABC中,如图,∠SAB=∠SAC=∠ACB=90°,AC=2,
BC=
13
,SB=
29

(1)证明:SC⊥BC;
(2)求侧面SBC与底面ABC所成的二面角大小;
(3)(理)求异面直线SC与AB所成的角的大小(用反三角函数表示).
(文)求三棱锥的体积VS-ABC

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在三棱锥P-ABC中,D、E分别是BC、AB的中点,PA⊥平面ABC,∠BAC=90°,AB≠AC,AC>AD,PC与DE所成的角为α,PD与平面ABC所成的角为β,二面角P-BC-A的平面角为γ,则α,β,γ的大小关系是(  )
A.α<β<γB.α<γ<βC.β<α<γD.γ<β<α

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形ABCD中,点E、F分别是边AB、BC上的点,将△AED、△DCF分别沿DE、DF折起,使A、C两点重合于点A′.
(1)△A′EF恰好是正三角形且Q是A′F的中点,求证:EQ⊥平面A′FD
(2)当E、F分别是AB、BC的中点时,求二面角A′-EF-D的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=
2
2
AB.
(Ⅰ)证明:BC1平面A1CD
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线和平面,则的一个必要条件是(    )
A.B.
C.D.成等角

查看答案和解析>>

同步练习册答案