精英家教网 > 高中数学 > 题目详情
已知函数
(1)当时,求的最小值;
(2)在区间(1,2)内任取两个实数p,q,且p≠q,若不等式>1恒成立,求实数a的取值范围;
(3)求证:(其中)。
(1);(2)(3)详见解析

试题分析:(1)求导,令导数大于0得增区间,令导数小于0得减区间,根据函数的单调性求其最小值。(2)因为,表示点与点连成的斜率,可将问题转化为直线的斜率问题。根据导数的几何意义可求其斜率,将恒成立问题转化为求函数最值问题,求最值时还是用求导再求其单调性的方法求其最值。(3)由(2)可得,则有。用放缩法可证此不等式。
试题解析:解:(1)

上递减,上递增。
。           4分
(2)
表示点与点连成的斜率,又,即函数图象在区间(2,3)任意两点连线的斜率大于1,
内恒成立.            6分
所以,当恒成立.



上单调递减;
上单调递增.             9分

                 10分
(3)由(2)得,
                                    11分
所以


成立.           14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)设是函数的极值点,求的值并讨论的单调性;
(2)当时,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当a=2时,求函数y=f(x)的图象在x=0处的切线方程;
(2)判断函数f(x)的单调性;
(3)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,以点为切点作函数图像的切线,直线与函数图像及切线分别相交于,记
(1)求切线的方程及数列的通项;
(2)设数列的前项和为,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=-cosx,若,则(     )
A.f(a)>f(b)B.f(a)<f(b)C.f(a)=f(b)D.f(a)f(b)>0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax--3ln x,其中a为常数.
(1)当函数f(x)的图象在点处的切线的斜率为1时,求函数f(x)在上的最小值;
(2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a的取值范围;
(3)在(1)的条件下,过点P(1,-4)作函数F(x)=x2[f(x)+3lnx-3]图象的切线,试问这样的切线有几条?并求出这些切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f0(x)=cos xf1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n
N,则f2 011(x)等于  (  ).
A.sin xB.-sin x
C.cos xD.-cos x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx+ax+1,a∈R.
(1)求f(x)在x=1处的切线方程.
(2)若不等式f(x)≤0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=aln x+x2(a>0),若对定义域内的任意x,f′(x)≥2恒成立,则a的取值范围是________.

查看答案和解析>>

同步练习册答案