精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx+ax+1,a∈R.
(1)求f(x)在x=1处的切线方程.
(2)若不等式f(x)≤0恒成立,求a的取值范围.
(1) y=(a+1)x   (2) (-∞,-1]
(1)∵x>0,f'(x)=+a,
∴f'(1)=a+1,切点是(1,a+1),
所以切线方程为y-(a+1)=(a+1)(x-1),
即y=(a+1)x.
(2)方法一:∵x>0,f'(x)=.
①当a≥0时,x∈(0,+∞),f'(x)>0,f(x)单调递增,显然当x>1时,f(x)>0,f(x)≤0不恒成立.
②当a<0时,x∈(0,-),f'(x)>0,f(x)单调递增,
x∈(-,+∞),f'(x)<0,f(x)单调递减,
∴f(x)max=f(x)极大值=f(-)=ln(-)≤0,
∴a≤-1,
所以不等式f(x)≤0恒成立时,a的取值范围是(-∞,-1].
方法二:∵x>0,所以不等式f(x)≤0恒成立,等价于ax≤-lnx-1,即a≤,
令h(x)=,
则h'(x)=-+=,
当x∈(0,1)时,h'(x)<0,h(x)单调递减,
当x∈(1,+∞)时,h'(x)>0,h(x)单调递增.
∴h(x)min=h(x)极小值=h(1)=-1,∴a≤-1.
所以不等式f(x)≤0恒成立时,a的取值范围是(-∞,-1].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求的最小值;
(2)在区间(1,2)内任取两个实数p,q,且p≠q,若不等式>1恒成立,求实数a的取值范围;
(3)求证:(其中)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.其中.
(1)若曲线y=f(x)与y=g(x)在x=1处的切线相互平行,求两平行直线间的距离;
(2)若f(x)≤g(x)-1对任意x>0恒成立,求实数的值;
(3)当<0时,对于函数h(x)=f(x)-g(x)+1,记在h(x)图象上任取两点A、B连线的斜率为,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数.
(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;
(2)若g(x)在(-1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=lnx- (m∈R)在区间[1,e]上取得最小值4,则m=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x3ax2axg(x)=2x2+4xc.
(1)试问函数f(x)能否在x=-1时取得极值?说明理由;
(2)若a=-1,当x∈[-3,4]时,函数f(x)与g(x)的图象有两个公共点,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某工厂生产某种产品,每日的成本C(单位:元)与日产量x(单位:吨)满足函数关系式C=10000+20x,每日的销售额R(单位:元)与日产量x满足函数关系式R=
已知每日的利润y=R-C,且当x=30时,y=-100.
(1)求a的值.
(2)求当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线m:y=kx+9,且f′(-1)=0.
(1)求a的值.
(2)是否存在k的值,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线的斜率为(  )
A.2B.-C.4D.-

查看答案和解析>>

同步练习册答案