精英家教网 > 高中数学 > 题目详情
某工厂生产某种产品,每日的成本C(单位:元)与日产量x(单位:吨)满足函数关系式C=10000+20x,每日的销售额R(单位:元)与日产量x满足函数关系式R=
已知每日的利润y=R-C,且当x=30时,y=-100.
(1)求a的值.
(2)求当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.
(1) a=3    (2) 当日产量为90吨时,每日的利润可以达到最大值14300元.
(1)由题意可得
y=
因为x=30时,y=-100,
所以-100=-×303+a×302+270×30-10000,
得a=3.
(2)当0<x<120时,
y=-x3+3x2+270x-10000,
y'=-x2+6x+270.
由y'=-x2+6x+270=0可得:
x1=90,x2=-30(舍),
所以当x∈(0,90)时,原函数是增函数,当x∈(90,120)时,原函数是减函数.
所以当x=90时,y取得最大值14300.
当x≥120时,y=10400-20x≤8000,
所以当日产量为90吨时,每日的利润可以达到最大值14300元.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知,且直线与曲线相切.
(1)若对内的一切实数,不等式恒成立,求实数的取值范围;
(2)当时,求最大的正整数,使得对是自然对数的底数)内的任意个实数 都有成立;
(3)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)设是函数的极值点,求的值并讨论的单调性;
(2)当时,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,以点为切点作函数图像的切线,直线与函数图像及切线分别相交于,记
(1)求切线的方程及数列的通项;
(2)设数列的前项和为,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为,求的值;
(3)若f(x)<x2在(1,上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=axx2g(x)=xln aa>1.
(1)求证:函数F(x)=f(x)-g(x)在(0,+∞)上单调递增;
(2)若函数y-3有四个零点,求b的取值范围;
(3)若对于任意的x1x2∈[-1,1]时,都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设定义在(0,+∞)上的函数f(x)=axb(a>0).
(1)求f(x)的最小值;
(2)若曲线yf(x)在点(1,f(1))处的切线方程为yx,求ab的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx+ax+1,a∈R.
(1)求f(x)在x=1处的切线方程.
(2)若不等式f(x)≤0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线y=x3+,
(1)求曲线过点P(2,4)的切线方程.
(2)求曲线的斜率为4的切线方程.

查看答案和解析>>

同步练习册答案