精英家教网 > 高中数学 > 题目详情
已知曲线y=x3+,
(1)求曲线过点P(2,4)的切线方程.
(2)求曲线的斜率为4的切线方程.
(1) 4x-y-4=0或x-y+2=0   (2) 4x-y-4=0和12x-3y+20=0
(1)设曲线y=x3+与过点P(2,4)的切线相切于点A(x0,+),则点A处切线的斜率k=,∴切线方程为y-(+)=(x-x0),即y=·x-+.
∵点P(2,4)在切线上,∴4=2-+,即-3+4=0,∴+-4+4=0,
∴(x0+1)(x0-2)2=0,
解得x0=-1或x0=2,
故所求切线的方程为4x-y-4=0或x-y+2=0.
(2)设切点为(x0,y0),
则切线的斜率为k==4,x0=±2,
所以切点为(2,4),(-2,-),
∴切线方程为y-4=4(x-2)和y+=4(x+2),
即4x-y-4=0和12x-3y+20=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=在点(-1,f(-1))处的切线方程为x+y+3=0.
(1)求函数f(x)的解析式.
(2)设g(x)=lnx.求证:g(x)≥f(x)在[1,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:函数.
(1)函数的图像在点处的切线的倾斜角为,求的值;
(2)若存在使,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若的极值点,求上的最大值;
(2)若函数上的单调递增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知都是定义在R上的函数,,且,且.若数列的前n项和大于62,则n的最小值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某工厂生产某种产品,每日的成本C(单位:元)与日产量x(单位:吨)满足函数关系式C=10000+20x,每日的销售额R(单位:元)与日产量x满足函数关系式R=
已知每日的利润y=R-C,且当x=30时,y=-100.
(1)求a的值.
(2)求当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=ex+2x,若f′(x)≥a恒成立,则实数a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线的斜率为(  )
A.2B.-C.4D.-

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f′(x)的图像如图X18-1所示.若两正数a,b满足f(a+2b)<1,则的取值范围是(  )
A.B.(-∞,-1)C.(-1,0)D.

查看答案和解析>>

同步练习册答案