精英家教网 > 高中数学 > 题目详情
已知函数.
(1)若的极值点,求上的最大值;
(2)若函数上的单调递增函数,求实数的取值范围.
(1)上的最大值为15;
(2)实数的取值范围为:.

试题分析:(1)先对函数求导,再把代入导函数使之为0,即解得的值,进一步可求;令导函数为0,列表可求上的最大值;(2)函数上的单调递增函数可转化为在R上恒成立,即可求出实数的取值范围.
试题解析:(1),令,即.
                    4分
,解得(舍去).
变化时,,的变化情况如下表:
  
1
(1,3)
3
   (3,5)
5
 
 
 
0
+
 
 
 1
单调递减↘
 9
单调递增↗
15
因此,当时,在区间[1,5]上有最大值是.      8分
(2) 是R上的单调递增函数转化为在R上恒成立,   10分
从而有,由,解得    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=axx2g(x)=xln aa>1.
(1)求证:函数F(x)=f(x)-g(x)在(0,+∞)上单调递增;
(2)若函数y-3有四个零点,求b的取值范围;
(3)若对于任意的x1x2∈[-1,1]时,都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线y=x3+,
(1)求曲线过点P(2,4)的切线方程.
(2)求曲线的斜率为4的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)及其导数f′(x),若存在x0,使得f(x0)=f′(x0),则称x0是f(x)的一个“巧值点”.下列函数中,有“巧值点”的是(  )
①f(x)=x2;②f(x)=e-x;③f(x)=ln x;④f(x)=tan x;⑤f(x)=.
A.①③⑤B.③④C.②③④D.②⑤

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=-xln x+ax在(0,e)上是增函数,函数g(x)=|ex-a|+,当x∈[0,ln 3]时,函数g(x)的最大值M与最小值m的差为,则a=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(原创)若对定义在上的可导函数,恒有,(其中表示函数的导函数的值),则(    )
A.恒大于等于0B.恒小于0
C.恒大于0D.和0的大小关系不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数yf(x)(x∈R)的图象如图所示,则不等式xf′(x)<0的解集为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)的导函数f′(x),且满足f(x)=2xf′(1)+ln x,则f′(1)=(   ).
A.-e B.-1 C.1 D.e

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则             .

查看答案和解析>>

同步练习册答案