精英家教网 > 高中数学 > 题目详情
(原创)若对定义在上的可导函数,恒有,(其中表示函数的导函数的值),则(    )
A.恒大于等于0B.恒小于0
C.恒大于0D.和0的大小关系不确定
C

试题分析:函数,则,∵恒成立,∴当时,,此时函数单调递增;当时,,此时函数单调递减,∴当时,取得极小值,同时也是最小值,∴,即.当时,,∴当时,.∵恒成立,∴当时,恒成立,∴.综上无论取何值,恒有,故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数.
(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;
(2)若g(x)在(-1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若的极值点,求上的最大值;
(2)若函数上的单调递增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图像在点处的切线斜率为10.
(1)求实数的值;
(2)判断方程根的个数,并证明你的结论;
(21)探究: 是否存在这样的点,使得曲线在该点附近的左、右两部分分别位于曲线在该点处切线的两侧? 若存在,求出点A的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图像过坐标原点,且在点 处的切线斜率为.
(1)求实数的值;
(2) 求函数在区间上的最小值;
(Ⅲ)若函数的图像上存在两点,使得对于任意给定的正实数都满足是以为直角顶点的直角三角形,且三角形斜边中点在轴上,求点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线的斜率为(  )
A.2B.-C.4D.-

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则的解集为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下面四个图象中,有一个是函数f(x)=x3ax2+(a2-1)x+1(a∈R)的导函数yf′(x)图象,则f(-1)等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3x2axax∈R,其中a>0.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围.

查看答案和解析>>

同步练习册答案