精英家教网 > 高中数学 > 题目详情
已知函数
(1)若>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为,求的值;
(3)若f(x)<x2在(1,上恒成立,求a的取值范围.
(1)单调递增函数;(2);(3)

试题分析:(1)首先确定函数的定义域是,再求导数,依题设中的条件判断的符号,从而得到在定义域内的单调性;
(2)由于,根据参数对导数的取值的影响,恰当地对其分类讨论,根据上的单调性,求出含参数的最小值表达式,列方程求的值, 并注意检查其合理性;
(3)由于
,则可将原问题转化为求函数的最大值问题,可借助导数进行探究.
试题解析:.解:(1)由题意f(x)的定义域为(0,+∞),且f'(x)=…(2分)
∵a>0,
∴f'(x)>0,
故f(x)在(0,+∞)上是单调递增函数      …(4分)
(2)由(1)可知,f′(x)=
(1)若a≥﹣1,则x+a≥0,即f′(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上为增函数,
∴[f(x)]m1n=f(1)=﹣a=
∴a=﹣(舍去) …(5分)
(2)若a≤﹣e,则x+a≤0,即f′(x)≤0在[1,e]上恒成立,此时f(x)在[1,e]上为减函数,
∴[f(x)]m1n=f(e)=1﹣(舍去)…(6分)
(3)若﹣e<a<﹣1,令f'(x)=0得x=﹣a,当1<x<﹣a时,f'(x)<0,
∴f(x)在(1,﹣a)上为减函数,f(x)在(﹣a,e)上为增函数,
∴[f(x)]m1n=f(﹣a)=ln(﹣a)+1=
∴[f(x)]m1n=f(﹣a)=ln(﹣a)+1=
∴a=﹣.…(8分)
(3)
          9分


时,
上是减函数             10分

上也是减函数,

所以,当时,上恒成立
所以.               12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知:函数.
(1)函数的图像在点处的切线的倾斜角为,求的值;
(2)若存在使,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.其中.
(1)若曲线y=f(x)与y=g(x)在x=1处的切线相互平行,求两平行直线间的距离;
(2)若f(x)≤g(x)-1对任意x>0恒成立,求实数的值;
(3)当<0时,对于函数h(x)=f(x)-g(x)+1,记在h(x)图象上任取两点A、B连线的斜率为,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

y=-2exsin x,则y′等于  (  ).
A.-2ex(cos x+sin x)B.-2exsin x
C.2exsin xD.-2excos x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某工厂生产某种产品,每日的成本C(单位:元)与日产量x(单位:吨)满足函数关系式C=10000+20x,每日的销售额R(单位:元)与日产量x满足函数关系式R=
已知每日的利润y=R-C,且当x=30时,y=-100.
(1)求a的值.
(2)求当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线的斜率为(  )
A.2B.-C.4D.-

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f′(x)的图像如图X18-1所示.若两正数a,b满足f(a+2b)<1,则的取值范围是(  )
A.B.(-∞,-1)C.(-1,0)D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则的解集为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3x2axax∈R,其中a>0.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围.

查看答案和解析>>

同步练习册答案