精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(Ⅰ)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(Ⅱ)当a=1时,求f(x)在数学公式上的最大值和最小值.

解:(Ⅰ)∵f(x)=+lnx,
∴f'(x)= (a>0)
∵函数f(x)在[1,+∞)上为增函数
∴f'(x)=≥0对 x∈[1,+∞)恒成立
∴ax-1≥0 在x∈[1,+∞)上恒成立
∴a≥,对x∈[1,+∞)恒成立
∴a≥1.
(Ⅱ)当a=1时,f'(x)=
当x∈[,1)时,f'(x)<0,故f(x)在x∈[,1)上单调递减;
当x∈[1,2]时,f'(x)>0,f(x)在x∈[1,2]上单调递增.
∴f(x)在x∈[,2]上有唯一极小值点,
故f(x)min=f(x)极小值=f(1)=0
∵f()=1-ln2,f(2)=-+ln2,f()-f(2)=-2ln2=
∵e3>16,∴f()-f(2)>0?f()>f(2).(10分)
∴f(x)在区间[,2]上的最大值f(x)=f()=1-ln2.
综上可知,函数f(x)在上的最大值是1-ln2,最小值是0.
分析:(Ⅰ)先求出函数的导函数,把函数f(x)在[1,+∞)上为增函数转化为导函数大于等于0恒成立问题,再转化为关于正实数a的不等式问题即可求出正实数a的取值范围;
(Ⅱ)先求出函数的导函数以及导数为0的根,进而求出其在上的单调性即可求f(x)在上的最大值和最小值.
点评:本题第二问考查了利用导数求闭区间上函数的最值,求函数在闭区间[a,b]上的最大值与最小值是通过比较函数在(a,b)内所有极值与端点函数f(a),f(b) 比较而得到的.
练习册系列答案
相关习题

科目:高中数学 来源:2014届湖北孝感高中高三年级九月调研考试理科数学试卷(解析版) 题型:解答题

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.

(Ⅰ)已知函数,若,求实数的取值范围;

(Ⅱ)已知的部分函数值由下表给出,

 求证:

(Ⅲ)定义集合

请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省高三上学期10月月考文科数学卷 题型:选择题

已知函数的定义域为,部分函数值如表所示,其导函数的图象如图所示,若正数满足,则的取值范围是(  )

-3

0

6

1

1

 

 

 

 

 

A.            B.           C.    D.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分

)已知函数                                       ,(>0),若函

    数的最小正周期为

(1)求的值,并求函数的最大值;

(2)若0<x<,当f(x)=时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.

我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.

(Ⅰ)已知函数,若,求实数的取值范围;

(Ⅱ)已知的部分函数值由下表给出,

 求证:

(Ⅲ)定义集合

请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.

我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.

(Ⅰ)已知函数,若,求实数的取值范围;

(Ⅱ)已知的部分函数值由下表给出,

 求证:

(Ⅲ)定义集合

请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案