【题目】在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是(写出所有正确命题的编号)
①存在这样的直线,既不与坐标轴平行又不经过任何整点;
②如果k与b都是无理数,则直线y=kx+b不经过任何整点;
③如果直线l经过两个不同的整点,则直线l必经过无穷多个整点;
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数;
⑤存在恰经过一个整点的直线.
【答案】①③⑤
【解析】解:①令y=x+ ,既不与坐标轴平行又不经过任何整点,所以本命题正确;②若k= ,b= ,则直线y= x+ 经过(﹣1,0),所以本命题错误;
设y=kx为过原点的直线,若此直线l过不同的整点(x1 , y1)和(x2 , y2),
把两点代入直线l方程得:y1=kx1 , y2=kx2 ,
两式相减得:y1﹣y2=k(x1﹣x2),
则(x1﹣x2 , y1﹣y2)也在直线y=kx上且为整点,
通过这种方法得到直线l经过无穷多个整点,则③正确;
④当k,b都为有理数时,y=kx+b可能不经过整点,例如k= ,b= ,故④不正确;
⑤令直线y= x恰经过整点(0,0),所以本命题正确.
综上,命题正确的序号有:①③⑤.
所以答案是:①③⑤.
【考点精析】掌握命题的真假判断与应用是解答本题的根本,需要知道两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
科目:高中数学 来源: 题型:
【题目】如图,平面直角坐标系中,射线y=x(x≥0)和y=0(x≥0)上分别依次有点A1、A2 , …,An , …,和点B1 , B2 , …,Bn…,其中 , , .且 , (n=2,3,4…).
(1)用n表示|OAn|及点An的坐标;
(2)用n表示|BnBn+1|及点Bn的坐标;
(3)写出四边形AnAn+1Bn+1Bn的面积关于n的表达式S(n),并求S(n)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, 为自然对数的底数.
(I)若曲线在点处的切线平行于轴,求的值;
(II)求函数的极值;
(III)当时,若直线与曲线没有公共点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,且满足a1=2,Sn-4Sn-1-2=0(n≥2,n∈Z).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=log2an,Tn为{bn}的前n项和,求证 <2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两队参加听歌猜歌名游戏,每队3人.随机播放一首歌曲,参赛者开始抢答,每人只有一次抢答机会(每人抢答机会均等),答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为 ,乙队中3人答对的概率分别为 , , ,且各人回答正确与否相互之间没有影响.
(Ⅰ)若比赛前随机从两队的6个选手中抽取两名选手进行示范,求抽到的两名选手在同一个队的概率;
(Ⅱ)用ξ表示甲队的总得分,求随机变量ξ的分布列和数学期望;
(Ⅲ)求两队得分之和大于4的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)对一切实数x,y均有f(x+y)﹣f(y)=(x+2y+2)x成立,且f(2)=12.
(1)求f(0)的值;
(2)在(1,4)上存在x0∈R,使得f(x0)﹣8=ax0成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com