精英家教网 > 高中数学 > 题目详情
如图,点P在正方体的面对角线上运动,则下列四个命题:①三棱锥的体积不变; ②∥面; ③; ④面。其中正确的命题的序号是_______________(写出所有你认为正确结论的序号)
. ① ② ④
解:对于①,容易证明AD1∥BC1,从而BC1∥平面AD1C,故BC1上任意一点到平面AD1C的距离均相等,所以以P为顶点,平面AD1C为底面,则三棱锥A-D1PC的体积不变;正确
对于②,连接A1B,A1C1容易证明A1C1∥AD1且相等,由于①知:AD1∥BC1
所以BA1C1∥面ACD1,从而由线面平行的定义可得;正确;
对于③由于DC⊥平面BCB1C1,所以DC⊥BC1平面,若DP⊥BC1,则DC与DP重合,与条件矛盾;错误;对于④,连接DB1,容易证明DB1⊥面ACD1,从而由面面垂直的判定知:正确.
故答案为:①②④
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,已知为圆的直径,点为线段上一点,且,点为圆上一点,且.点在圆所在平面上的正投影为点

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,平面平面是以为斜边的等腰直角三角形,分别为的中点,
(1)设的中点,证明:平面
(2)在内是否存在一点,使平面,若存在,请找出点M,并求FM的长;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.
(1)求证:EF∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥S—ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设
PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°.
(I)求证:;(Ⅱ)求证:平面MAP⊥平面SAC;
( Ⅲ)求锐二面角M—AB—C的大小的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知平面,则图中直角三角形的个数为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

矩形中,⊥面上的点,且⊥面交于点.
(1)求证:
(2)求证://面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

类比平面几何中的定理 “设是三条直线,若,则”,得出如下结论:
①设是空间的三条直线,若,则
②设是两条直线,是平面,若,则
③设是两个平面,是直线,若
④设是三个平面,若,则
其中正确命题的个数是(    )  
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

点P为ΔABC所在平面外一点,PO⊥平面ABC,垂足为O,若PA=PB=PC,则点O是ΔABC的(  )                                   
A.内心B.外心C.重心D.垂心

查看答案和解析>>

同步练习册答案