精英家教网 > 高中数学 > 题目详情
12.女子国际象棋世界冠军中国江苏选手侯逸凡与某计算机进行人机对抗赛,若侯逸凡获胜的概率为0.65,人机和棋的概率为0.25,那么侯逸凡不输的概率为0.9.

分析 侯逸凡不输包含侯逸凡获胜与人机和棋两种情况,由此利用互斥事件加法定理能求出结果.

解答 解:∵侯逸凡获胜的概率为0.65,人机和棋的概率为0.25,
∴侯逸凡不输的概率p=0.65+0.25=0.9.
故答案为:0.9.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件加法定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.口袋里装有1红,2白,3黄共6个形状相同小球,从中取出2球,事件A=“取出的两球同色”,B=“取出的2球中至少有一个黄球”,C=“取出的2球至少有一个白球”,D=“取出的两球不同色”,E=“取出的2球中至多有一个白球”.下列判断中正确的序号为①.
①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件:④P(CUE)=1;⑤P(B)=P(C).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若X是一个集合,т是一个以X的某些子集为元素的集合,且满足:①X属于т,∅属于т;②т中任意多个元素的并集属于т;③т中任意多个元素的交集属于т.则称т是集合X上的一个拓扑.已知函数f(x)=[x[x]],其中[x]表示不大于x的最大整数,当x∈(0,n],n∈N*时,函数f(x)值域为集合An,则集合A2上的含有4个元素的拓扑т的个数为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设f(x)=12sin(2x+φ),(φ是常数).
(1)求证:当φ=$\frac{π}{2}$时,f(x)是偶函数;
(2)求使f(x)为偶函数的所有φ值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=$\frac{3sinx+1}{3sinx-1}$的值域是(-∞,$-\frac{1}{4}$]∪[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=m•4x-3×2x+1-2的图象与x轴有交点,则实数m的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图给出的是计算$1+\frac{1}{3}+\frac{1}{5}+…+\frac{1}{2015}$的值的程序框图,其中判断框内应填入的是(  )
A.i≤2012B.i≤2014C.i≤2016D.i≤2018

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行右图的程序框图后,若输入和输出的结果依次为4和51,则m=(  )
A.18B.5C.15D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题p:?x∈R,都有x2-2x+3≥m成立;命题q:方程4x2+4(m-2)x+1=0无实根,若命题“p∧q”与命题“?q”均为假命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案