精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=1,AA1=2,D是AA1的中点,E是B1C的中点,
(1)证明:DE∥平面ABC
(2)求二面角C-B1D-B的余弦值.

(1)证明:如图,E是B1C的中点,取为BC的中点G,连接EG,AG,ED,
在△BCB1中,∵BG=GC,B1E=EC,∴EG∥BB1,且EG=BB1
又AD∥BB1,且AD=BB1
∴EG∥AD,EG=AD,
∴四边形ADEG为平行四边形,∴DE∥AG,
又AG?平面ABC,DE?平面ABC,
∴DE∥平面ABC.
(2)解:如图,以B为原点,BC、BA、BB1分别为x、y、z轴,建立空间直角坐标系O-xyz,
则B(0,0,0),C(1,0,0),A(0,1,0),
B1(0,0,2),C1(1,0,2),A1(0,1,2),D(0,1,1),
∵直三棱柱ABC-A1B1C1,∴B1B⊥BC,
又AB⊥BC,AB∩BB1=B,∴BC⊥平面ABB1D.
如图,连接BD,
在△BB1D中,∵BD=B1D=2,BB1=2,
∴BD2+B1D2=BB12,即BD⊥B1D,
∵BD是CD在平面ABB1D内的射影,
∴CD⊥B1D,∴∠CDB为二面角C-B1D-B的平面角.
∵DC=(1,-1,-1),DB=(0,-1,-1),
∴cos∠CDB===
∴二面角C-B1D-B的余弦值为
分析:(1)取G为BC的中点,由E是B1C的中点,知EG∥BB1,且EG=BB1,又AD∥BB1,且AD=BB1,故EG∥AD,EG=AD,所以四边形ADEG为平行四边形从而有DE∥AG,从而有DE∥平面ABC.
(2)由直三棱柱的结构特征,得到B1B⊥BC,再由AB⊥BC,得到BC⊥平面ABB1D.从而有BD⊥B1D,所以BD是CD在平面ABB1D内的射影,∠CDB为二面角C-B1D-B的平面角.由向量法能求出二面角C-B1D-B的余弦值.
点评:本题考查直线与平面平行的证明,考查二面角的余弦值的求法.解题时要认真审题,恰当地引入辅助线,合理地建立空间直角坐标系,注意向量量的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案