精英家教网 > 高中数学 > 题目详情
已知抛物线的顶点为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的中心.两曲线的焦点在同一坐标轴上,椭圆的长轴长为4.抛物线与椭圆交于点M(
2
3
,-
2
6
3
)
,求抛物线方程与椭圆方程.
分析:由题意可设抛物线的方程为y2=mx(m≠0).把点代入M(
2
3
,-
2
6
3
)
抛物线方程即可得到m.把点M(
2
3
,-
2
6
3
)
代入椭圆的方程可得
4
9a2
+
24
9b2
=1
,又2a=4,联立即可解得.
解答:解:∵椭圆的焦点在x轴上,且两曲线的焦点在同一坐标轴上,
∴抛物线的焦点也在x轴上,可设抛物线的方程为y2=mx(m≠0).
M(
2
3
,-
2
6
3
)
在抛物线上,∴(-
2
6
3
)2=
2
3
m
,解得m=4,∴抛物线的方程为y2=4x.
M(
2
3
,-
2
6
3
)
在椭圆上,∴
4
9a2
+
24
9b2
=1
   ①
又2a=4  ②
由①②可得a2=4,b2=3.
∴椭圆的方程是
x2
4
+
y2
3
=1
点评:本题考查了抛物线与椭圆的焦点的标准方程及其性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•浦东新区三模)已知椭圆C的长轴长是焦距的两倍,其左、右焦点依次为F1、F2,抛物线M:y2=4mx(m>0)的准线与x轴交于F1,椭圆C与抛物线M的一个交点为P.
(1)当m=1时,求椭圆C的方程;
(2)在(1)的条件下,直线l过焦点F2,与抛物线M交于A、B两点,若弦长|AB|等于△PF1F2的周长,求直线l的方程;
(3)由抛物线弧y2=4mx(0≤x≤
2m
3
)
和椭圆弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲线叫“抛椭圆”,是否存在以原点O为直角顶点,另两个顶点A1、A2落在“抛椭圆”上的等腰直角三角形OA1A2,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分18分)第一题满分4分,第二题满分6分,第三题满分8分.

已知椭圆的长轴长是焦距的两倍,其左、右焦点依次为,抛物线的准线与轴交于,椭圆与抛物线的一个交点为.

(1)当时,求椭圆的方程;

(2)在(1)的条件下,直线过焦点,与抛物线交于两点,若弦长等于的周长,求直线的方程;

(3)由抛物线弧和椭圆弧

)合成的曲线叫“抛椭圆”,是否存在以原点为直角顶点,另两个顶点落在“抛椭圆”上的等腰直角三角形,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分18分)第一题满分4分,第二题满分6分,第三题满分8分.

已知椭圆的长轴长是焦距的两倍,其左、右焦点依次为,抛物线的准线与轴交于,椭圆与抛物线的一个交点为.

(1)当时,求椭圆的方程;

(2)在(1)的条件下,直线过焦点,与抛物线交于两点,若弦长等于的周长,求直线的方程;

(3)由抛物线弧和椭圆弧

)合成的曲线叫“抛椭圆”,是否存在以原点为直角顶点,另两个顶点落在“抛椭圆”上的等腰直角三角形,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年上海市浦东新区高考数学三模试卷(理科)(解析版) 题型:解答题

已知椭圆C的长轴长是焦距的两倍,其左、右焦点依次为F1、F2,抛物线M:y2=4mx(m>0)的准线与x轴交于F1,椭圆C与抛物线M的一个交点为P.
(1)当m=1时,求椭圆C的方程;
(2)在(1)的条件下,直线l过焦点F2,与抛物线M交于A、B两点,若弦长|AB|等于△PF1F2的周长,求直线l的方程;
(3)由抛物线弧y2=4mx和椭圆弧
(m>0)合成的曲线叫“抛椭圆”,是否存在以原点O为直角顶点,另两个顶点A1、A2落在“抛椭圆”上的等腰直角三角形OA1A2,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年上海市浦东新区高考数学三模试卷(理科)(解析版) 题型:解答题

已知椭圆C的长轴长是焦距的两倍,其左、右焦点依次为F1、F2,抛物线M:y2=4mx(m>0)的准线与x轴交于F1,椭圆C与抛物线M的一个交点为P.
(1)当m=1时,求椭圆C的方程;
(2)在(1)的条件下,直线l过焦点F2,与抛物线M交于A、B两点,若弦长|AB|等于△PF1F2的周长,求直线l的方程;
(3)由抛物线弧y2=4mx和椭圆弧
(m>0)合成的曲线叫“抛椭圆”,是否存在以原点O为直角顶点,另两个顶点A1、A2落在“抛椭圆”上的等腰直角三角形OA1A2,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.

查看答案和解析>>

同步练习册答案