(本题满分18分)第一题满分4分,第二题满分6分,第三题满分8分.
已知椭圆
的长轴长是焦距的两倍,其左、右焦点依次为
、
,抛物线![]()
的准线与
轴交于
,椭圆
与抛物线
的一个交点为
.
(1)当
时,求椭圆
的方程;
(2)在(1)的条件下,直线
过焦点
,与抛物线
交于
两点,若弦长
等于
的周长,求直线
的方程;
(3)由抛物线弧![]()
和椭圆弧![]()
![]()
(
)合成的曲线叫“抛椭圆”,是否存在以原点
为直角顶点,另两个顶点
落在“抛椭圆”上的等腰直角三角形
,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.
解:(1)设椭圆的实半轴长为a,短半轴长为b,半焦距为c,
当
=1时,由题意得,a=2c=2,
,
所以椭圆的方程为
.(4分)
(2)依题意知直线
的斜率存在,设
,由
得,
,由直线
与抛物线
有两个交点,可知
.设
,由韦达定理得
,则
(6分)又
的周长为
,所以
, (8分)
解得
,从而可得直线
的方程为
(10分)
(3)由题意得,“抛椭圆”由抛物线弧
和椭圆弧
合成,且
、
。
假设存在![]()
为等腰直角三角形,由
所在曲线的位置做如下3种情况讨论:
①当
同时在抛物线弧
上时,由
、
的斜率分别为
,
比为钝角,显然与题设矛盾. 此时不存在 (12分)
② 当
同时在椭圆弧
上时,由椭圆与等腰直角三角形的对称性知,则两直角边关于x轴对称.即直线
的斜率为1,直线
的斜率为
,
得![]()
符合题意;此时存在(15分)
③ 不妨设当
在抛物线弧上,
在椭圆弧上时,
于是设直线
的方程为
(其中
),将其代入![]()
得
;由
,直线
的方程为
,同理代入椭圆弧方程![]()
得
,
由
得
,解得
与
矛盾,此时不存在。
因此,存在以原点
为直角顶点,另两个顶点
落在“抛椭圆”上的等腰直角三角形
,两直角边所在直线的斜率分别为1和
.(18分)
科目:高中数学 来源: 题型:
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形
中,已知过点
的直线与线段
分别相交于点
。若
。
(1)求证:
与
的关系为
;
(2)设
,定义函数
,点列
在函数
的图像上,且数列
是以首项为1,公比为
的等比数列,
为原点,令
,是否存在点![]()
,使得
?若存在,请求出
点坐标;若不存在,请说明理由。
(3)设函数
为
上偶函数,当
时
,又函数
图象关于直线
对称, 当方程
在
上有两个不同的实数解时,求实数
的取值范围。
查看答案和解析>>
科目:高中数学 来源:2012届上海市崇明中学高三第一学期期中考试试题数学 题型:解答题
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
对于数列
,如果存在一个正整数
,使得对任意的
(
)都有
成立,那么就把这样一类数列
称作周期为
的周期数列,
的最小值称作数列
的最小正周期,以下简称周期。例如当
时
是周期为
的周期数列,当
时
是周期为
的周期数列。
(1)设数列
满足
(
),
(
不同时为0),且数列
是周期为
的周期数列,求常数
的值;
(2)设数列
的前
项和为
,且
.
①若
,试判断数列
是否为周期数列,并说明理由;
②若
,试判断数列
是否为周期数列,并说明理由;
(3)设数列
满足
(
),
,
,
,数列
的前
项和为
,试问是否存在
,使对任意的
都有
成立,若存在,求出
的取值范围;不存在, 说明理由;
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市高三第一学期期中考试试题数学 题型:解答题
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
对于数列
,如果存在一个正整数
,使得对任意的
(
)都有
成立,那么就把这样一类数列
称作周期为
的周期数列,
的最小值称作数列
的最小正周期,以下简称周期。例如当
时
是周期为
的周期数列,当
时
是周期为
的周期数列。
(1)设数列
满足
(
),
(
不同时为0),且数列
是周期为
的周期数列,求常数
的值;
(2)设数列
的前
项和为
,且
.
①若
,试判断数列
是否为周期数列,并说明理由;
②若
,试判断数列
是否为周期数列,并说明理由;
(3)设数列
满足
(
),
,
,
,数列
的前
项和为
,试问是否存在
,使对任意的
都有
成立,若存在,求出
的取值范围;不存在,
说明理由;
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市十三校高三上学期第一次联考试题文科数学 题型:解答题
(本题满分18分,第1小题满分5分,第2小题满分5分,第3小题满分8分)
已知函数
,其中
.
(1)当
时,设
,
,求
的解析式及定义域;
(2)当
,
时,求
的最小值;
(3)设
,当
时,
对任意
恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题
(本题满分18分;第(1)小题5分,第(2)小题5分,第(3)小题8分)
设数列
是等差数列,且公差为
,若数列
中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.
(1)若
,求证:该数列是“封闭数列”;
(2)试判断数列
是否是“封闭数列”,为什么?
(3)设
是数列
的前
项和,若公差
,试问:是否存在这样的“封闭数列”,使
;若存在,求
的通项公式,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com