精英家教网 > 高中数学 > 题目详情
8.已知命题p:?x∈R,x2-5x+6>0,命题q:?α、β∈R,使sin(α+β)=sinα+sinβ,则下列命题为真命题的是(  )
A.p∧qB.p∨(¬q)C.(¬p)∧qD.p∧(¬q)

分析 分别判断出p,q的真假,从而判断出复合命题的真假即可.

解答 解:关于命题p:?x∈R,x2-5x+6>0,
△=25-24>0,
故是假命题,
关于命题q:?a0∈R,β0∈R,使sin(α00)=sinα0+sinβ0
是真命题,比如α00=0,
故选:C.

点评 本题考查了复合命题的判断,考查二次函数以及三角函数问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知椭圆C经过点($\sqrt{3}$,$\frac{1}{2}$)和点($\sqrt{2}$,-$\frac{\sqrt{2}}{2}$),互相垂直的两条射线OA,OB交椭圆C于A,B两点,其中A在第二象限内(如图所示),若D是椭圆的左顶点且BD∥OA.
(1)求椭圆C的标准方程;
(2)求$\frac{|OA|}{|BD|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知α,β都是锐角,且cosβ=$\frac{8}{17}$,cos(α+β)=-$\frac{4}{5}$,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C:(x-1)2+(y+2)2=9,直线l:y=kx+1,与圆C相交于A、B两点,O为坐标原点,并且OA⊥OB,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列各式的值.
(1)$(2\frac{1}{4})^{\frac{1}{2}}$-0.30-${16}^{-\frac{3}{4}}$;
(2)设${x}^{\frac{1}{2}}$+${x}^{-\frac{1}{2}}$=3,求x+x-1的值;
(3)${4^{{{log}_4}5}}-ln{e^5}+lg500+lg2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一块形状为直角三角形的铁皮,两直角边长分别为60cm,80cm,现将它剪成一个矩形,并以此三角形的直角为矩形的一个角,则矩形的最大面积是1200cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过点$M(1,\frac{{\sqrt{2}}}{2})$,且其离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)若F为椭圆C的右焦点,椭圆C与y轴的正半轴相交于点B,经过点B的直线与椭圆C相交于另一点A,且满足$\overrightarrow{BA}•\overrightarrow{BF}$=2,求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)满足对于任意x>0,都有f(x)+2f($\frac{1}{x}$)=logax+$\frac{x}{lna}$+$\frac{2}{xlna}$(a>0,a≠1).
(1)求f(x)的极值;
(2)设f(x)的导函数为f′(x),试比较f(x)与f′(x)的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$,x∉R.
(1)求函数f(x)的最小正周期,最大值,最小值;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案