精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中

1)当时,求函数的图象在点处的切线方程;

2)讨论函数的单调性;

3)当,且时,证明不等式

【答案】1.(2)见解析(3)见解析

【解析】

1)求导后求出斜率,点斜式即可求出答案;

2)求导得,分讨论,借助导数即可求出单调性;

3)当时,,令,利用导数可得函数在区间上单调递增,得时,,对任意正整数,取,有,利用裂项相消法即可证明.

解:(1)当时,

,故切线的斜率为2

∴函数的图象在点处的切线方程为

2

时,,函数在区间上单调递增,

时,,解得

①当时,

,解得,令,解得

∴函数在区间上单调递减,在上单调递增,

②当时,

,解得,令,解得

∴函数在区间上单调递减,

上单调递增;

3)证明:当时,

在区间上恒为正,

∴函数在区间上单调递增,

)时,

∴当时,

,对任意正整数,取,有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个口袋内有个不同的红球,个不同的白球,

(1)从中任取个球,红球的个数不比白球少的取法有多少种?

(2)若取一个红球记分,取一个白球记分,从中任取个球,使总分不少于分的取法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为.

(1)求函数的解析式;

(2)若关于的方程恰有两个不同的实根,求实数的值;

(3)数列满足.

证明:①

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:函数上存在唯一的零点;

2)若函数在区间上的最小值为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x+1)ln x-2x.

(1)求函数的单调区间;

(2)设h(x)=f′(x)+,若h(x)>k(kZ)恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射击运动员在比赛前进行三周的封闭训练,教练员将其每天成绩的均值数据整理,并绘成条形图如下,

根据该图,下列说法错误的是:(

A.第三周平均成绩最好B.第一周平均成绩比第二平均成绩好

C.第一周成绩波动较大D.第三周成绩比较稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某周末,郑州方特梦幻王国汇聚了八方来客.面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同.某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查.调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20.

1)根据题意,请将下面的列联表填写完整;

选择“西游传说”

选择“千古蝶恋”

总计

成年人

未成年人

总计

2)根据列联表的数据,判断是否有的把握认为选择哪个主题公园与年龄有关.

附参考公式与表:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R的奇函数满足,且时, ,下面四种说法①;②函数在[-6,-2]上是增函数;③函数关于直线对称;④若,则关于的方程在[-8,8]上所有根之和为-8,其中正确的序号__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.

(1)求的普通方程和的直角坐标方程;

(2)若过点的直线交于两点,与交于两点,求的取值范围.

查看答案和解析>>

同步练习册答案