精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)试比较的大小关系,并给出证明;

(2)解方程:

(3)求函数 是实数)的最小值.

【答案】12.(3

【解析】试题分析:(1作差,配方后即可得;(2)原方程化为,设,可得,进而可得结果;(3)令,则,函数可化为,利用二次函数的性质分情况讨论,分别求出两段函数的最小值,比较大小后可得各种情况下函数 是实数)的最小值.

试题解析:1)因为

所以

2)由,得

,则,故原方程可化为

解得,或(舍去),

,即,解得

所以

3)令,则

函数可化为

①若

时, ,对称轴,此时

时, ,对称轴,此时

②若

,对称轴,此时

时, ,对称轴,此时

③若

时, ,对称轴,此时

时, ,对称轴,此时,故

④若

时, ,对称轴,此时

时, ,对称轴,此时

时,

时,

⑤若

时, ,对称轴,此时

时, ,对称轴,此时

因为时,

综述:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,抛物线C:y2=2px(p>0)的焦点为F,经过点F的直线l与抛物线交于P,Q两点,弦PQ的中点为N,经过点N作y轴的垂线与C的准线交于点T.

(Ⅰ)若直线l的斜率为1,且|PQ|=4,求抛物线C的标准方程;
(Ⅱ)证明:无论p为何值,以线段TN为直径的圆总经过点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)设函数求函数在区间上的值域

2)定义表示中较小者设函数 .

①求函数的单调区间及最值

②若关于的方程有两个不同的实根求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数的定义域为的取值范围;

(2)设函数若对任意总有的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=2 cos(θ﹣ ).
(Ⅰ) 求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ) 求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了研究年宣传费(单位:千元)对销售量(单位:吨)和年利润(单位:千元)的影响,搜集了近 8 年的年宣传费和年销售量数据:

1

2

3

4

5

6

7

8

38

40

44

46

48

50

52

56

45

55

61

63

65

66

67

68

(Ⅰ)请补齐表格中 8 组数据的散点图,并判断中哪一个更适宜作为年销售量关于年宣传费的函数表达式?(给出判断即可,不必说明理由)

(Ⅱ)若(Ⅰ)中的,且产品的年利润 的关系为,为使年利润值最大,投入的年宣传费 x 应为何值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在 的展开式中,第6项为常数项.
(Ⅰ)求含x2的项的系数;
(Ⅱ)求展开式中所有的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体中, 平面 .

求四面体的四个面的面积中,最大的面积是多少?

Ⅱ)证明:在线段上存在点,使得,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学参加学校自主招生3门课程的考试,假设该同学第一门课程取得优秀成绩概率为 ,第二、第三门课程取得优秀成绩的概率分别为p,q(p<q),且不同课程是否取得优秀成绩相互独立,记ξ为该生取得优秀成绩的课程数,其分布列为

ξ

0

1

2

3

p

x

y

(Ⅰ)求该生至少有1门课程取得优秀成绩的概率及求p,q的值;
(Ⅱ)求该生取得优秀成绩课程门数的数学期望Eξ.

查看答案和解析>>

同步练习册答案