精英家教网 > 高中数学 > 题目详情

【题目】已知在 的展开式中,第6项为常数项.
(Ⅰ)求含x2的项的系数;
(Ⅱ)求展开式中所有的有理项.

【答案】解:(Ⅰ)由通项公式得

因为第6项为常数项,所以r=5时,有 ,解得n=10,

,得 ,故所求含x2的项的系数为

(Ⅱ)根据通项公式,由题意得 ,令 ,则10﹣2r=3k,即

因为r∈Z,所以k应为偶数,所以k可以取2,0,﹣2,即r可以取2,5,8,

所以第3项,第6项,第9项为有理数,

它们分别为


【解析】(Ⅰ)求出二项式的通项公式根据题意求出常数项进而得到n的值,根据通项公式令x的次数等于2得到r = 2 即可求出含x2的项的系数。(2)利用通项公式由题意找出x的次数令其为有理数,对其赋值可求出有理项。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆A:(x+1)2+y2=8,动圆M经过点B(1,0),且与圆A相切,O为坐标原点.
(Ⅰ)求动圆圆心M的轨迹C的方程;
(Ⅱ)直线l与曲线C相切于点M,且l与x轴、y轴分别交于P、Q两点,若 ,且λ∈[ ,2],求△OPQ面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资根据长期收益率市场预测投资类产品的收益与投资额成正比投资类产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0125万元和05万元

1分别写出两类产品的收益与投资额的函数关系;

2该家庭有20万元资金全部用于理财投资问:怎么分配资金能使投资获得最大收益其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)试比较的大小关系,并给出证明;

(2)解方程:

(3)求函数 是实数)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有实根?如果有实根请求出一个长度为的区间使如果没有,请说明理由(注:区间的长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】衡州市临枣中学高二某小组随机调查芙蓉社区160个人,以研究这一社区居民在20:00﹣22:00时间段的休闲方式与性别的关系,得到下面的数据表:

休闲方式
性别

看电视

看书

合计

20

100

120

20

20

40

合计

40

120

160

下面临界值表:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828


(Ⅰ)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分别列和期望;
(Ⅱ)根据以上数据,能否有99%的把握认为“在20:00﹣22:00时间段的休闲方式与性别有关系”?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(﹣1,1,2)、B(1,0,﹣1),设D在直线AB上,且 =2 ,设C(λ, +λ,1+λ),若CD⊥AB,则λ的值为( )
A.
B.﹣
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,点的中点.

(1)求证: 平面

(2)若平面 求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的四边形ABCD,已知 =(6,1), =(x,y), =(﹣2,﹣3)

(1)若 且﹣2≤x<1,求函数y=f(x)的值域;
(2)若 ,求x,y的值及四边形ABCD的面积.

查看答案和解析>>

同步练习册答案