精英家教网 > 高中数学 > 题目详情

已知双曲线的方程为

试问:是否存在被点B(1,1)平分的弦?如果存在,试求出该弦所在的直线方程;如果不存在,请说明理由.

答案:
解析:

  解:设被B(1,1)平分的弦所在的直线l的斜率为k(2-k2≠0),

  则l:y-1=k(x-1)代入=1.

  整理有(2-k2)x2-2k(1-k)x-(1-k2)-2=0.①

  依题意有=1.

  ∴k=2.将k=2代入①

  有2x2-4x+3=0.相应的判别式Δ=16-24<0,

  即①式无解,故不存在直线l过B且被B平分.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的方程为
x2
a2
-
y2
b2
=1(a>0,b>0)
,过左焦点F1作斜率为
3
3
的直线交双曲线的右支于点P,且y轴平分线段F1P,则双曲线的离心率是(  )
A、
2
B、
5
+1
C、
3
D、2+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的方程为16x2-9y2=144.
(1)求双曲线的焦点坐标、离心率和准线方程;
(2)求以双曲线的中心为顶点,左顶点为焦点的抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南三模)已知双曲线的方程为
x2
a2
-
y2
b2
=1
(a>0,b>0),双曲线的一个焦点到一条渐近线的距离为
5
3
c
(c为双曲线的半焦距长),则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区二模)已知双曲线的方程为
x23
-y2=1
,则此双曲线的焦点到渐近线的距离为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区二模)已知双曲线的方程为
x2
4
-y2=1
,则其渐近线的方程为
y=±
1
2
x
y=±
1
2
x
,若抛物线y2=2px的焦点与双曲线的右焦点重合,则p=
2
5
2
5

查看答案和解析>>

同步练习册答案