(本小题满分15分)
已知定点A、B间的距离为2,以B为圆心作半径为2
的圆,P为圆上一点,线段AP的垂直平分线l与直线PB交于点M,当P在圆周上运动时,点M的轨迹记为曲线C.
(1)建立适当的坐标系,求曲线C的方程,并说明它是什么样的曲线;
(2)试判断l与曲线C的位置关系,并加以证明.
解 (1)以AB中点为坐标原点,直线AB所在直线为x轴建立平面直角坐标系,则A(-1,0),B(1,0).
设M(x, y),由题意:|MP|=|MA|, |BP|=2
,所以 |MB|+|MA|=2
.
故曲线C是以A、B为焦点,长轴长为2
的椭圆,其方程为x2+2y2=2.
(2)直线l与曲线C的位置关系是相切.
证法一:由(1)知曲线C方程为x2+2y2=2,
设P(m, n),则P在⊙B上,故(m-1)2+n2=8, 即m2+n2=7+2m.
当P、A、B共线时,直线l的方程为x=±,显然结论成立.
当P、A、B不共线时,直线l的方程为:
,整理得,
把直线l的方程代入曲线C方程得:
,
整理得
![]()
∴直线l与曲线C相切.(说明:以A或B为原点建系亦可)
证法二:在直线l上任取一点
,连结
,由垂直平分线的性质得
,
∴
(当且仅当M、
重合时取“=”号)
∴直线l与椭圆C有且仅有一个公共点M. 结论得证
科目:高中数学 来源:2012-2013学年福建省高三上学期期中理科数学试卷(解析版) 题型:解答题
(本小题满分15分)
已知函数![]()
(Ⅰ)求函数
的单调区间;
(Ⅱ)若
,试分别解答以下两小题.
(ⅰ)若不等式
对任意的
恒成立,求实数
的取值范围;
(ⅱ)若
是两个不相等的正数,且
,求证:
.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三下学期3月联考理科数学 题型:解答题
(本小题满分15分).
已知
、
分别为椭圆
:
的
上、下焦点,其中
也是抛物线
:
的焦点,
点
是
与
在第二象限的交点,且
。
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点P(1,3)和圆
:
,过点P的动直线
与圆
相交于不同的两点A,B,在线段AB取一点Q,满足:
,
(
且
)。求证:点Q总在某定直线上。
![]()
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题
(本小题满分15分)
如图已知,椭圆
的左、右焦点分别为
、
,过
的直线
与椭圆相交于A、B两点。
(Ⅰ)若
,且
,求椭圆的离心率;
(Ⅱ)若
求
的最大值和最小值。
![]()
查看答案和解析>>
科目:高中数学 来源:2014届浙江省宁波市高一上学期期末考试数学 题型:解答题
(本小题满分15分)若函数
在定义域内存在区间
,满足
在
上的值域为
,则称这样的函数
为“优美函数”.
(Ⅰ)判断函数
是否为“优美函数”?若是,求出
;若不是,说明理由;
(Ⅱ)若函数
为“优美函数”,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011年江苏省高二下学期期中考试理数 题型:解答题
(本小题满分15分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到文科题的概率
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com