精英家教网 > 高中数学 > 题目详情

已知椭圆数学公式上的点P到一个焦点的距离为3,则P到另一个焦点的距离为________.

7
分析:椭圆的长轴长为10,根据椭圆的定义,利用椭圆上的点P到一个焦点的距离为3,即可得到P到另一个焦点的距离.
解答:椭圆的长轴长为10
根据椭圆的定义,∵椭圆上的点P到一个焦点的距离为3
∴P到另一个焦点的距离为10-3=7
故答案为:7
点评:本题考查椭圆的标准方程,考查椭圆的定义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E的中心在原点,焦点在x轴上,椭圆上的点到焦点的距离的最小值为
2
-1
,离心率e=
2
2

(Ⅰ)求椭圆E的方程;
(Ⅱ)过点(1,0)作直线l交E于P、Q两点,试问在x轴上是否存在一定点M,使
MP
MQ
为定值?若存在,求出定点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•镇江一模)已知椭圆O的中心在原点,长轴在x轴上,右顶点A(2,0)到右焦点的距离与它到右准线的距离之比为
3
2
.不过A点的动直线y=
1
2
x+m
交椭圆O于P,Q两点.
(1)求椭圆的标准方程;
(2)证明P,Q两点的横坐标的平方和为定值;
(3)过点 A,P,Q的动圆记为圆C,动圆C过不同于A的定点,请求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区一模)已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的离心率为
2
2
,且椭圆上的点到两个焦点的距离和为2
2
.斜率为k(k≠0)的直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).
(Ⅰ)求椭圆的方程;
(Ⅱ)求m的取值范围;
(Ⅲ)试用m表示△MPQ的面积,并求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区一模)已知椭圆M的对称轴为坐标轴,离心率为
2
2
,且抛物线y2=4
2
x
的焦点是椭圆M的一个焦点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l与椭圆M相交于A、B两点,以线段OA,OB为邻边作平行四边形OAPB,其中点P在椭圆M上,O为坐标原点.求点O到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•通州区一模)已知椭圆C的焦点在y轴上,离心率为
2
2
,且短轴的一个端点到下焦点F的距离是
2

(I)求椭圆C的标准方程;
(II)设直线y=-2与y轴交于点P,过点F的直线l交椭圆C于A,B两点,求△PAB面积的最大值.

查看答案和解析>>

同步练习册答案