精英家教网 > 高中数学 > 题目详情
17.已知实数a,b,则“log2a>log2b”是“2a>2b”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

分析 根据充分条件和必要条件的定义结合指数不等式和对数不等式的解法进行判断即可.

解答 解:若log2a>log2b,则a>b>0,即2a>2b成立,
若2a>2b得a>b,不能得到log2a与log2b关系,
故“log2a>log2b”是“2a>2b”的充分不必要条件,
故选:B.

点评 本题主要考查充分条件和必要条件的判断,根据指数函数和对数函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.将所有三边长为连续自然数的锐角三角形按周长由小到大排列,则前100个锐角三角形中锐角最大的三角形的周长为342.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设[x]表示不大于实数x的最大整数,函数f(x)=$\left\{\begin{array}{l}{(lnx)^{2}-[lnx]-2,x>0}\\{\sqrt{-x}+\frac{1}{2}x-a,x≤0}\end{array}\right.$,若f(x)有且仅有4个零点,则实数a的取值范围为(  )
A.a<0或a=$\frac{1}{2}$B.0≤a<$\frac{1}{2}$C.a>$\frac{1}{2}$D.不存在实数a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x>1,x+$\frac{1}{x-1}$≥m恒成立,则m的取值范围是(  )
A.(-∞,2]B.(-∞,3]C.[2,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\frac{1}{2}$sin2x图象的振幅为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知△ABC的内角A,B,C对的边分别为a,b,c,且sinA+$\sqrt{2}$sinB=2sinC,则cosC的最小值等于(  )
A.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}}}{4}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3-2x2+1,则f(1)+g(1)=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A,B,C的对边分别为a,b,c.若$\frac{a}{b+c}+\frac{b}{a+c}$=1,则角C=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=log3x+x-5的零点x0∈(a,a+1),则整数a的值为3.

查看答案和解析>>

同步练习册答案